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Abstract  The study of the geographical distribution of disease incidence and its relationship to
potential risk factors (referred to here as ‘’geographical epidemiology”) has provided, and contin-
ues to provide, rich ground for the application and development of statistical methods and mod-
els. In recent years increasingly powerful and versatile statistical tools have been developed in
this application area. This paper discusses the general classes of problem in geographical epi-
demiology and reviews the key statistical methods now being employed in each of the applica-
tion areas identified. The paper does not attempt to exhaustively cover all possible methods and
models, but extensive references are provided to further details and to additional approaches.
The overall aim is to provide a picture of the “current state of the art” in the use of spatial statis-
tical methods in epidemiological and public health research. Following the review of methods,
the main software environments which are available to implement such methods are discussed.
The paper concludes with some brief general reflections on the epidemiological and public
health implications of the use of spatial statistical methods in health and on associated benefits
and problems.
Key words  Spatial Analysis; Spatial Statistics; Statistical Models; Epidemiology

Resumo  O estudo da distribuição geográfica da incidência de doenças e da sua relação com fa-
tores de risco potenciais (chamada aqui de “epidemiologia geográfica”) vem constituindo um
terreno fértil para a aplicação e desenvolvimento de métodos e modelos estatísticos. Nos últimos
anos, foram desenvolvidas ferramentas cada vez mais poderosas e versáteis nesta área de aplica-
ção. O artigo discute as classes gerais de problemas na epidemiologia geográfica e faz uma revi-
são dos principais métodos estatísticos utilizados atualmente em cada uma das áreas de aplica-
ção identificadas. O artigo não procura cobrir exaustivamente todos os medos e modelos possí-
veis, mas fornece referências bibliográficas para outros detalhes e abordagens. O objetivo geral é
dar um panorama do “estado da arte” no uso de métodos estatísticos espaciais na pesquisa em
epidemiologia e saúde pública. Após a revisão metodológica, o autor discute os principais am-
bientes de software atualmente disponíveis para implementar tais métodos. O artigo conclui
com algumas reflexões gerais sobre as implicações, para a epidemiologia e a saúde pública, do
uso de métodos estatísticos espaciais em saúde, além dos benefícios e problemas associados.
Palavras-chave  Análise Espacial; Estatística Espacial; Modelos Estatísticos; Epidemiologia
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Introduction

The concerns of geographical epidemiology

The analysis of the geographical distribution of
the incidence of disease and its relationship to
potential risk factors has an important role to
play in various kinds of public health and epi-
demiological studies. For the purposes of this
paper this general area is referred to as “geo-
graphical epidemiology” and four broad areas
of statistical interest are identified: 

Disease Mapping focusses on producing a
map of the true underlying geographical distri-
bution of the disease incidence, given “noisy”
observed data on disease rates. This may be
useful in suggesting hypotheses for further in-
vestigation or as part of general health surveil-
lance and the monitoring of health problems.
For example, in assisting to detect the outbreak
of a possible epidemic, or in identifying signifi-
cant trends in disease rates over time, or in par-
ticular geographical localities. 

Ecological Studies are concerned with study-
ing associations between observed incidence
of disease and potential risk factors as mea-
sured on groups rather than individuals, where
these groups are typically defined by geograph-
ical areas. Such studies are valuable in investi-
gating the aetiology of disease and may help to
target further research, and possibly preventa-
tive measures. 

Disease Clustering Studies focus on identi-
fying geographical areas with significant ele-
vated risk of disease, or on assessing the evi-
dence of elevated risk around putative sources
of hazard. Uses include the targeting of follow
up studies to ascertain reasons for identified
clustering in disease occurence, or the initia-
tion of control measures where the aetiology of
identified clustering is established. 

Environmental Assessment and Monitoring
is concerned with ascertaining the spatial dis-
tribution of environmental factors relevant to
health and exposure to these, so as to establish
necessary controls or take preventative action. 

Sub-areas exist under any one of these four
main headings depending on the particular
epidemiological or public health context and
upon whether data is available on individual
cases of a disease, or only at the level of geo-
graphical area, and upon whether there is a
temporal as well as a spatial dimension to the
analysis. The distinction between the four main
types of study is also somewhat blurred in prac-
tice. For example, good disease incidence maps
often play an important preliminary role in
studies of disease clustering, disease mapping

commonly incorporates relationships with co-
variates representing known risk factors for the
disease, and putative hazards are sometimes
usefully viewed as particular kinds of covariate
in the analysis, while environmental assess-
ment may well be the prelude to a study de-
signed to investigate whether there is a rela-
tionship between some suspected risk factor
and disease incidence. 

These provisos accepted, the division of ge-
ographical epidemiological concerns into four
main areas provides a useful structure under
which to review associated statistical methods
in the subsequent sections of this article. At the
same time it should be appreciated that al-
though the focus of this paper is on geographi-
cal epidemiology, the concerns discussed un-
der these four headings can be extended to a
broader public health context; for instance, in
planning the location of health services based
on relative risk, in estimating immunization
coverage, or in assisting to design other forms
of disease prevention or health education pro-
grams. We do not explicitly comment on these
broader uses, but they should be borne in
mind in relation to the spatial methods subse-
quently discussed. 

Statistical methods in geographical 
epidemiology

Given the breadth and importance of the con-
cerns in geographical epidemiology, as out-
lined in the previous section, it is not surpris-
ing that there has been considerable interest in
the area in recent years. Much of this interest
has been in the development of relevant statis-
tical methods and techniques and there is no
doubt that this particular vein of research has
been, and continues to be, a fruitful source of
interesting statistical problems, motivating suc-
cessful methodological developments within
that discipline. 

Several issues of major statistical journals
have been devoted to spatial statistical meth-
ods in health applications (e.g. American Jour-
nal of Epidemiology, 132: S1–S202 – 1990; Jour-
nal of Royal Statistical Society, Series A, 152-
1989; Journal of Royal Statistical Society, Series
D, 47-1989; Statistics in Medicine, 12-1993, 14-
1995, 15-1996. There has also been a consider-
able volume of papers in the field published
separately, key journals including: American
Journal of Epidemiology; Biometrics; Biometri-
ka; Environmetrics; Journal of Environmental
and Ecological Statistics; Geographical Analy-
sis; IEEE Transactions on GeoScience and Re-
mote Sensing; Journal of Royal Statistical Soci-
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ety, Series A, B, C, & D; Journal of American Sta-
tistical Association; Mathematical Geology; Sta-
tistics in Medicine and Statistical Science. In ad-
dition a number of significant recent texts have
been devoted to this subject area (e.g. Elliot et
al., 1996; Gatrell & Loytonen, 1998; Halloran &
Greenhouse, 1997; Lawson et al., 1999a) 

There have also been various special initia-
tives concerned with statistical methods in ge-
ographical epidemiology. A notable example
was the 1997 international workshop in Rome
in conjunction with the European initiative on
disease mapping and risk assessment and the
WHO European Centre for Environment and
Health (see Lawson et al., 1999a). Some of the
work conducted under the European Spatial
and Computational Statistics Network has also
been particularly relevant to spatial epidemiol-
ogy and this network has now held two inter-
national workshops (Aussois, France, 1998;
Crete, Greece, 1999). In addition to these, a con-
siderable amount of statistical work has been
conducted under the aupices of other agencies
with long term interests in geographical and
environmental health issues, e.g. the Centres
for Disease Control and Prevention (CDC); the
Environmental Protection Agency (EPA); the
National Research Centre for Statistics and the
Environment; the Pan American Health Orga-
nization (PAHO); the World Health Organiza-
tion (WHO) and various European Community
government agencies. 

The net benefits of the statistical efforts as-
sociated with all this activity are difficult to
judge. Certainly we now have statistical tools
that are capable of addressing much more com-
plex situations than was the case say ten years
ago. However, the epidemiological and public
health implications and benefits arising from
the use of such methods are more difficult to
assess. This point is returned to in the final sec-
tion of this article after looking at some of the
statistical developments in more detail in pre-
ceding sections (each of which relates to one of
the four main headings identified earlier and
after considering the software environments
which are available to implement methods dis-
cussed. 

One general point worth making at this
stage is that although certain of the four areas
reviewed are characterized by specialized sta-
tistical methods, there is also considerable
overlap in the statistical modelling that has
been employed in any one of them. For exam-
ple, “disease clustering studies” have given rise
to an extensive and rather specialized literature
on hypothesis tests for either “focussed” or
“unfocussed” clusters of disease. “Environmen-
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tal assessment” also inevitably involves a focus
on specialised spatial interpolation methods,
some of which are derived from the geostatisti-
cal literature. However, these kinds of excep-
tions aside, a distinctive feature of much of the
recent modelling work in all areas is a Bayesian
approach. Indeed, the various areas of geo-
graphical epidemiology have all provided a very
fruitful area for the application of Bayesian
models and associated Markov Chain Monte
Carlo (MCMC) methodology. As will be seen in
subsequent sections, the application of Bayesian
techniques in Disease Mapping, in Ecological
Studies, in Disease Clustering Studies and in En-
vironmental Assessment and Monitoring is now
well-established and accompanied by an ex-
tensive and growing literature. 

Data types in geographical epidemiology

Before embarking on a review of methods un-
der the four topic headings discussed earlier, it
is useful to make some broad distinctions in
the types of data that might have to be dealt
with in any of these areas, since that will assist
to further categorize the methods under each
heading. 

Broadly speaking, there are essentially four
kinds of data which have to be considered. Some
problems may involve simply one of these types
of data, but often mixtures of data types may
be involved. Some methods discussed in sub-
sequent sections may only be appropriate to a
specific data type, others may be able to be ap-
plied (or modified to apply) to more than one
data type. The four data types are: 

Irregular lattice data – measures aggregat-
ed/averaged to the level of census tracts or oth-
er type of administrative district. Could be
counts of cases or population at risk, socio-
economic measures, environmental assess-
ments etc. 

Case-event data – locations (usually residen-
tial) of individual cases of a disease, or of indi-
vidual members of a suitable control group
(“population at risk”). Covariates may also be
measured on each individual. 

Geostatistical data – measurements (usual-
ly of an environmental nature) sampled at point
locations. 

Regular lattice data – measures aggregat-
ed/averaged to a regular grid (typically arising
from remote sensing).

In any of the above cases there could also
be a temporal dimension as well as a spatial
dimension to the data. For example, we might
have case-event data on a disease where both
the spatial location of cases and the time of
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onset of the disease is recorded. Environmen-
tal data is also often collected in both space
and time. 

Disease mapping

Maps of disease incidence have always played
a key descriptive role in spatial epidemiology.
They are useful for several purposes such as:
identification of areas with suspected eleva-
tions in risk of a disease, assisting in the formu-
lation of hypotheses about disease aetiology
and assessing potential needs for geographical
variation in follow-up studies, preventative
measures, or other forms of health resource al-
location. 

From a statistical point of view the problem
of disease mapping amounts to obtaining a
“good” estimate of the geographic heterogene-
ity of the disease rate over the study area. The
obvious approach is to map standardized rates,
but many of the diseases of interest are rela-
tively uncommon and observed SMRs there-
fore have high natural variability with extreme
values tending to occur in areas with the small-
est populations. The areas of greatest potential
interest are thus often associated with the least
reliable data. One therefore seeks methods to
produce a more reliable map of the underlying
geographical variation in disease rates which
reduces excess local variability at the same time
as correcting for variations produced by popu-
lation age/sex variations or other well-known
risk factors. Methodologically, there are con-
ceptual similarities to general statistical tech-
niques designed to “clean” observed spatial im-
agery. 

Most commonly, the observed data on dis-
ease incidence is aggregated to an irregular lat-
tice i.e. counts of cases and corresponding pop-
ulations in area units. However, as health infor-
mation systems steadily improve, there is an
increasing demand for methods that can be
used with case event data, where more precise
locations of cases (usually residential address-
es) are known. Models for the two different da-
ta types are dealt with separately below. 

Mapping aggregated data

There are several different statistical approach-
es, but the focus here is on what has emerged
as the “mainstream” methodology – that based
on Bayesian hierarchical models. The basic
model employed is that the observed counts of
cases, y = (y1 , . . . , yn ), in the different areas,
each follow a Poisson distribution with mean

µi = ei ρi , where ei is the “expected” number of
cases in each area (based upon the population
at risk and suitable overall reference rates for
the disease) and ρi is the relative disease risk in
area i. 

Generally the “expected” number of cases ei

is assumed known and often incorporates strati-
fication corrections for known confounders,
such as age and sex (i.e. ei = Σj rj pij , where rj

are known group overall reference rates and pij

is the population of type j in area i). In the case
of such “direct standardization”, modelling of-
ten focusses on the log relative risk of the dis-
ease θi = log ρi.

If the θi are taken as “fixed effects” then their
maximum likelihood estimates are simply

θ̂i = log (
yi ),
ei

i.e. the relative risk estimates are just the tradi-
tional SMRs. But, as mentioned previously,
SMRs in small areas may be unreliable because
the most extreme SMRs are often based on on-
ly a few cases. Some “smoothing” of the raw
SMRs is therefore incorporated into the model
by taking the θi as “random effects”. Essentially
this allows for overdispersion in the Poisson
model caused by unobserved confounding fac-
tors (e.g. see Clayton & Bernardinelli, 1996;
Mollié, 1995). 

The most common method of estimating
the vector of “random effects” � = (θ1 , . . . , θn)
is to adopt a Bayesian approach. Each θi is as-
sumed to arise from a suitable prior distribu-
tion with relevant “hyperparameters” each of
which in turn arise from a suitably “non-infor-
mative” “hyperprior” distribution. Various spec-
ifications of the prior and hyperprior distribu-
tions are possible (e.g. see Bernardinelli et al.,
1995a), but a typical choice in disease mapping
is to take θi ~N(µθ , σ2

θ) with the non-informa-
tive hyperpriors being a normal distribution
for the hyperparameter µθ and a gamma distri-
bution for the hyperparameter 1/σ2

θ, with large
variances in both cases. In general if P (�|�) de-
notes the chosen prior distribution involving a
vector of hyperparameters � and if P (�) is the
associated joint hyperprior, then the joint pos-
terior distribution of all of the parameters giv-
en the data y is derived from the relationship: 

P (�, �|y) α P (y|�)P (�|�)P (�)

Given P (�, �|y), the parameters of interest,
�, are then estimated from this posterior distri-
bution via �̂ = E(�|y). Unfortunately, direct math-
ematical derivation of the posterior P (�, �|y)
from the above relationship involves a high-di-
mensional integration to obtain the constant
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of proportionality (the normalising constant)
and is not mathematically tractable. Therefore,
in practice, either empirical Bayes methods or
Monte Carlo simulation is used to approximate
P (�, �|y) indirectly. 

In empirical Bayes (e.g. Clayton & Kaldor,
1987; Devine & Louis, 1994; Martuzzi & Elliott,
1996) the unknown vector of hyperparameters
is replaced by suitable estimate �̂. The problem
of deriving the posterior then simplifies, since
the corresponding relationship is now: 

P (�|y, �̂) α P (y|�)P (�| �̂)

and this can be handled by direct mathemati-
cal analysis. Commonly, the hyperparameter
estimates �̂ that are used are their maximum
likelihood estimates from the marginal likeli-
hood P(y|�) = ∫ P(y|�)P(�|�)d�. In that case �̂ is
obtained from information pertaining to the
overall map structure (hence the terminology
“empirical” – the hyperparameters are estimat-
ed from global aspects of the same data set). 

The problem with the empirical approach
is that it makes no allowance for uncertainty in
estimating � – the hyperparameters are simply
replaced by their estimates assuming these to
be error free (e.g. see Bernardinelli & Mont-
moli, 1992). In the MCMC approach the full hy-
perprior framework is used, but rather than at-
tempt to determine P(�, �|y) by direct mathe-
matical analysis, instead observations are indi-
rectly simulated from this posterior using
MCMC methods (e.g. see Brooks, 1998; Gilks et
al., 1996). The desired parameter estimates �̂ are
then calculated from relevant sample statistics
of the simulated values from P(�, �|y). The ba-
sic idea of the MCMC approach is to simulate
values from a Markov Chain whose equilibri-
um distribution is the same as the posterior
distribution of interest. This is achieved via the
general Metropolis algorithm which only re-
quires the complex joint posterior distribution,
P(�, �|y), to be specified up to the normalizing
constant (e.g. see Gilks et al., 1993). One partic-
ular variant of the general Metropolis algo-
rithm known as “Gibbs sampling” (e.g. see Gilks
et al., 1993) is convenient when conditional
posterior distributions of each parameter giv-
en all the others are available up to a normaliz-
ing constant (as is the case here and often in
spatial models more generally) see Gilks et al.,
(1993). Gibbs sampling is implemented in the
BUGS or WinBUGS computer packages (Spiegel-
halter et al., 1997) which provide a relatively
easy way to fit a large range of Bayesian mod-
els. It consists of visiting each parameter in turn
(i.e. here each θi in � and each hyperparameter

in �) and simulating a new value for this para-
meter from its full conditional distribution giv-
en the current values for the remaining para-
meters (i.e. here from P (θi|θj≠i , �, y) etc.)

Regardless of which particular variant of
the Metropolis algorithm is adopted, after dis-
carding a suffcient number of initial “burn in”
simulations the MCMC approach results in re-
peated sets of simulated values for the para-
meters (�, �) from their posterior distribution
P (�, �|y). Samples from the marginal distribu-
tions (e.g. P (θi|y)) are then approximated by
simply picking out the values for one parame-
ter from the simulated samples for (�, �) ignor-
ing the other parameters. Point estimates con-
cerning the parameter are then obtained from
the sample mean, of that set of values. 

The basic model for relative risk that has
been considered so far allows for Poisson
overdispersion in the distribution of disease
counts yi via the random effects θi. This may
partially account for unmeasured covariates
that induce spatial dependence in the yi , but it
does not allow for explicit spatial dependence
between the yi. The latter may be present (e.g.
see Clayton et al., 1993) arising, for example,
through lesser variability of rates in neighbor-
ing densely populated urban areas as opposed
to sparsely populated rural areas, or through
an infectious aetiology of the disease. Such ex-
plicit spatial dependence may be incorporated
into the model by including an additional spa-
tially structured random effect term (e.g. see
Clayton & Bernardinelli, 1996; Mollié, 1995).
The model is extended to: log µi = log ei + θi + νi ,
so that now the log relative risks are given by
θi + νi. The priors and hyperpriors relating to θi

are as before. But νi are taken to have a spatial-
ly structured prior. A typical choice is to use a
conditional intrinsic Gaussian autoregres-
sive model (an example of a CAR, see Besag &
Kooperberg, 1995) where: 

νi |νj≠i ~ N (
Σj≠i wij νj ,

σ2
ν )Σj≠i wij Σj≠i wij

where wij are suitably chosen proximity weights
for the areas (often simply 1 if two areas are ad-
jacent, 0 otherwise) and the new hyperparame-
ter σν controls the strength of local spatial de-
pendence. Typically a vague gamma hyperpri-
or is assumed for 1/σ2

ν. MCMC methods then
provide samples from P (�, �|y) where now � =
(µθ, σθ, σν).

Further extensions to the disease mapping
model are possible to include covariates which
correct for known risk factors other than those
incorporated into the direct standardization
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term (i.e. the expected cases ei ). In that case,
the model essentially becomes similar to that
used in ecological investigations (see Section
Ecological Studies). Indirect standardization is
also one example of this, where population val-
ues in age/sex groups are treated as covariates
in the model with associated unknown overall
group reference rate parameters and this re-
places the known “expected” number of cases
ei . The group reference rates are then estimat-
ed as part of the model. 

Mapping case event data

Again various approaches exist, but generally
there has been less work in this area than on
aggregated data and a “mainstream” method-
ology is more difficult to identify. The basic
model usually adopted is that locations of indi-
vidual cases and of individuals in the popula-
tion at risk both arise as inhomogenous Pois-
son processes with spatially varying intensities
(events per unit area) denoted by µ(s) and π(s)
respectively, where s represents spatial posi-
tion. Then: 

µ(s) = απ(s)ρ(s)

where α is the overall reference rate for the
disease and ρ(s) is the relative risk surface. Of-
ten interest focusses on the estimation of log
relative risk θ(s) = log ρ(s) rather than directly
on ρ(s). 

A typical practical situation is that data are
available on n = n1 + n2 point locations which
correspond to n1 cases of the disease at loca-
tions (s1 , . . . , sn1

) and n2 cases of a suitable
control group at locations (sn1+1 , . . . , sn ). The
control group may be primary data, or sec-
ondary data obtained by appropriate simula-
tion of the location of control cases from socio-
demographic data aggregated to small areas
covering the region concerned. Given this data
structure, a straightforward approach (see
Bithel, 1990; Kelsall & Diggle, 1995) is then to
non-parametrically estimate θ(s) (to within an
additive constant) via a log ratio of Kernel esti-
mates as:

θ̂(s) = log( Σn1
i=1 K (s - si ; τ) )Σn

i=n1+1 K(s - si ; τ)

where K(.) is some suitable radially symmetric
kernel function and τ is a suitably chosen band-
width. 

Choise of an optimal bandwidth τ is howev-
er rather difficult in the above approach (see
Kelsall & Diggle, 1995) and more recent work

(Kelsall & Diggle, 1998) avoids that problem by
adopting a non-parametric binary regression
approach which results in an indirect estimate
of θ(s). Essentially the method is to attach bi-
nary values yi to all n data locations such that
yi = 1 if the location corresponds to a disease
case and yi = 0 if it does not. The probability
that any point is a disease case, φ(s), is then es-
timated via kernel regression (e.g. see Green &
Silverman, 1994) of yi on si i.e. by: 

φ̂(s) =
Σn

i=1 K (s - si ; τ)yi

Σn
i=1 K(s - si ; τ)

Then (to an additive constant) θ̂(s) is given
by logit ( φ̂(s)) i.e. by 

log ( φ̂(s) ).
1 - φ̂(s)

Bandwith selection methods are then easier to
handle and the approach can also be extended
to include covariates measured on each indi-
vidual so as to correct for additional known risk
factors for the disease. This is achieved via a
Generalised Additive Model (GAM) as discussed
later in the Section Ecological Studies. 

Further issues and approaches 
in disease mapping

There are several further extensions and varia-
tions on the basic ideas used in disease map-
ping. This section lists some of the most signif-
icant issues that have been considered with rel-
evant references. 

General methods for simple exploratory
analyses of spatial data which may be usefully
applied in relation to disease incidence have
been investigated by several authors (e.g. Cis-
laghi et al., 1995; Haining et al., 1998; Unwin &
Unwin, 1998; Walter, 1993b; Wilhelm & Steck,
1998). The addition of further covariates to fur-
ther refine the basic disease mapping model
has already been mentioned (e.g. see Bernar-
dinelli et al., 1997; Clayton & Bernardinelli,
1996; Clayton et al., 1993; Martuzzi & Elliott,
1996; Mollié, 1995; Muller et al., 1997; Xia et al.,
1997). Several authors have also considered
how models can be extended to handle disease
incidence data which has a temporal, as well as
a spatial dimension (e.g. Bernardinelli et al.,
1995b; Knorr-Held & Besag, 1998; Waller et al.,
1997). Special problems introduced by edge ef-
fects in disease mapping have been discussed
by Lawson et al. (1999b). Bayesian mixture or
latent structure models have also been used in
disease mapping as an alternative to the more
conventional models discussed earlier (e.g.
Richardson & Green, 1997; Schalttmann & Bohn-
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ing, 1993). Some other studies have also con-
sidered the application of geostatistical inter-
polation models (primarily variants of “krig-
ing”) to the analysis of disease rates (e.g. Carrat
et al., 1992; Webster et al., 1994).

Ecological studies

As mentioned previously, “ecological studies”
are concerned with studying associations be-
tween observed incidence of disease and po-
tential risk factors as measured on groups
rather than individuals, where these groups are
typically defined by geographical areas or loca-
tion. Such studies are valuable in investigating
the aetiology of disease and may help to target
further research and possibly preventative
measures. 

From a statistical point of view ecological
studies involve regression type models, but the
models are complicated by the need to allow
for both spatial and aspatial confounding fac-
tors (see Clayton et al., 1993; Prentice & Shep-
pard, 1995; Richardson et al., 1992). Usually
such studies involve observed data on disease
incidence which is aggregated to an irregular
lattice i.e. counts of cases and corresponding
populations in areal units. However, more re-
cently there has also been some work studying
associations between suspected risk factors
and disease incidence using case event data or
mixtures of aggregated data (relating to risk
factors) and individual data (relating to disease
incidence). Models for aggregated disease inci-
dence data and for that which involves case
events are dealt with separately below. The ag-
gregated nature of the data normally involved
in ecological studies has led to considerable
emphasis on the need to avoid, and if possible,
correct for the so-called “ecological fallacy” i.e.
the various forms of bias associated with mak-
ing inference about the effects of factors on
the disease risk of individuals from relation-
ships obtained on groups where within group
variability cannot be assessed (e.g. see Axel-
son, 1999; Elliot et al., 1996; Prentice & Shep-
pard, 1995). 

Models for aggregated data 
in ecological studies

As in disease mapping, several different ap-
proaches have been used. The one that tends
to dominate in the literature uses extensions to
the Bayesian hierarchical models employed in
disease mapping and the focus here is mostly
on that framework. It should be noted howev-

er, that other forms of spatial regression model
have also been adopted, some of which have
potential advantages in terms of addressing
ecological bias and that point is returned to in
Section Further Issues and Approaches in Eco-
logical Studies. 

The basic Bayesian hierarchical model
adopted is a straightforward extension of that
discussed under disease mapping. Now K co-
variates, (xi1 , . . . , xiK), are included and related
to suspected risk factors measured in each
area, so that the model becomes: 

log µi = log ei + Σ
K

k=1
βk xik + θi + νi

with µi, ei, θi, νi as in Section Mapping Aggregat-
ed Data and βk are new parameters reflecting
the influence of each covariate on the log rela-
tive risk which is now modelled as Σk βkxik + θi

+ νi . As mentioned previously, one could drop
the “direct standardization term”, log ei , and
instead use indirect standardization by incor-
porating a constant β0 and including amongst
the covariates relevant measures of population
age/sex structure. 

The priors and hyperpriors for θi and νi are
chosen as in Section Mapping Aggregated Da-
ta. The new parameters, �, are each taken to
have specified “non-informative” priors (e.g.
Normal distributions with large variances). We
then proceed as before using MCMC methods
to derive samples from the posterior P (�, �, �|y)
with � referring, as earlier, to the vector of hy-
perparameters relating to the random effects θi

and νi. Further details and variations on this
basic modelling framework may be found in
many published examples of ecological studies
(e.g. see Bernardinelli et al., 1997; Clayton et
al., 1993; Lawson et al., 1999a; Mollié, 1995;
Richardson et al., 1992; Rushton et al., 1996;
Spiegelhalter, 1998) 

Models for case event data 
in ecological studies

There has been relatively little work in this area
compared with that devoted to aggregated dis-
ease incidence data. Some recent initiatives in-
clude work by Kelsall & Diggle (1998) and Law-
son & Clark (1999). The latter work was men-
tioned in passing in relation to disease map-
ping in Section Mapping Case Event Data. It in-
volves the extension of the non-parametric bi-
nary regression model considered there to a
GAM. Recall that in the model discussed previ-
ously the focus was on estimation of φ(s), the
probability that any point is a disease case in a
combined realization of cases and controls, the
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log relative risk surface, θ(s), is then related to
this (up to an additive constant) by logit (φ(s)).
When additional risk factors are involved then
instead of estimating φ(s) by kernel regression,
K covariates are included, (x1(s), . . . , xK(s)), in
the regression, so that the data yi are observa-
tions on a binary response variable (“case or
not case”) with associated probability φ(s)
such that:

logit (φ(s)) = Σ
K

k=1
βk xk(s) + ψ(s) 

If ψ(s) is assumed to be a “smooth” function
of s, then the above represents a GAM with a
logit link function. GAMs are fitted by an itera-
tively weighted additive model procedure (see
Hastie & Tibshirani, 1990) that is implemented
in several software packages (e.g. Splus – Vern-
ables & Ripley, 1994) Alternative ways of han-
dling associations between suspected risk fac-
tors and disease incidence using case event da-
ta are discussed in Best et al. (1998); Lawson &
Clark (1999) and Lawson et al. (1999a). 

Further issues and approaches 
in ecological studies

Several further extensions and variations on
the basic models used in ecological studies
have been investigated. This section lists some
of the most significant issues that have been
considered with relevant references. 

The general approach of graphical models
(e.g. Spiegelhalter, 1998) provide a particularly
valuable framework within which to specify the
dependency structure of hierarchical Bayesian
ecological models. Corrections to adjust for
measurement error in the covariates have been
suggested by Bernardinelli et al. (1997). Mix-
tures of case event and aggregated data have
been discussed by Best et al. (1998) and Plum-
mer & Clayton (1996). Thomson et al. (1999)
has considered a situation involving aggregat-
ed data corresponding to a mix of different ge-
ographical scales. Bayesian latent structure or
mixture models have also been employed in
ecological studies as an alternative to the more
conventional model discussed in Section Mod-
els for Aggregated Data in Ecological Studies
(e.g. Schalttmann et al., 1996; Weir & Pettitt,
1999). Multi-level models (Goldstein, 1995)
have also been employed as an alternative to
the Bayesian approach (e.g. Congdon, 1998;
Langford & Lewis, 1998). Other forms of spatial
regression models have also been adopted
(Brunsdon et al., 1998; Christiansen & Morris,
1997; Ghosh et al., 1998; Prentice & Sheppard,
1995; Wolpert & Ickstadt, 1998; Yasui & Lele,

1997) Some of these involve so-called “aggre-
gated models” which are particularly orientat-
ed to reducing ecological bias by combining
partial samples of individual level data on risk
factors in addition to that on groups at the are-
al level. Ecological models appropriate for spa-
tio-temporal data have also been considered
(e.g. Bernardinelli et al., 1995b; Knorr-Held &
Besag, 1998; Waller et al., 1997; Wikle et al.,
1998). Methods for longitudinal data in general
(e.g. see Diggle et al., 1994) have also been ap-
plied in ecological studies. 

Disease clustering studies

As mentioned earlier, disease clustering stud-
ies seek to establish significant “unexpected”
elevated risk of a disease either in space, or in
space and time. Such localized “clusters” could
arise from many factors e.g. an unidentified in-
fectious agent, localized pollution sources, or
localized common treatment side effects. There
are several comprehensive general reviews of
the area (e.g. Alexander & Boyle, 1996; Alexan-
der et al., 1991; Anderson & Titterington, 1997;
Bithell, 1995; Hills & Alexander, 1989; Kulldorf
& Nagarwalla, 1995; Olsen et al., 1996). 

In general, disease cluster studies may seek
to investigate a “general tendency to cluster”
(no prespecified locations or number of sus-
pected hazards) or be concerned with “focussed
clustering” (prespecified number and locations
for putative hazards). The two situations are
discussed separately below. Note that the sec-
ond situation naturally provides for a more
powerful statistical test of the suspected clus-
tering because the hypothesis is more tightly
specified. However, there is a clear need to avoid
what is sometimes referred to as “centering the
target where the bullet strikes” which in this
context would imply using the data to explore
where elevations in risk appear to exist and
then subsequently using those locations in a
test of “focussed clustering”.

In general, disease clustering studies may
involve either case event or aggregated data
(see Diggle & Elliott, 1995, for a discussion of
the relative merits). In both cases known popu-
lation heterogeneity and other covariates must
be allowed for along with any natural tendency
to cluster through effects induced by data ag-
gregation or inadequately measured covariates. 
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Assessment of general clustering

A large amount of work in this area has fo-
cussed on development of hypothesis tests for
a general tendency to cluster. Some of the most
commonly used tests with associated refer-
ences are listed below. 

For aggregated data, the key hypothesis
testing approaches suggested include those
discussed by: Alexander et al. (1991); Assunção
& Reis (1999); Besag & Newell (1991); Kulldorf
(1997); Kulldorf & Nagarwalla (1995); Kulldorf
et al. (1997); Oden (1995); Potthoff & Whit-
tinghill (1966); Tango (1995); Turnbull et al.
(1990); Walter (1993a, 1994); and Wittemore et
al. (1987). Many of these various tests are more
or less refined variations on similar themes.
Some are concerned only with assessment of a
tendency to cluster, others also identify the lo-
cations where such clustering occurs. For case
event data, key hypothesis tests include those
discussed by: Anderson & Titterington (1997);
Cuzick & Edwards (1990); Diggle & Chetwynd
(1991); and Oppenshaw (1991); Again some of
these are concerned only with assessment of a
tendency to cluster, others also identify the lo-
cations where such clustering occurs. Hypoth-
esis tests designed to detect spatio-temporal
interaction include those discussed by: Baker
(1996); Jacquez (1996b); Knox (1964); Kulldorf
& Hjalmars (1999); Lawson & Viel (1995) and
Mantel (1967). 

The problem with many such hypothesis
tests for general clustering is that positive re-
sults invariably leave subsequent questions
unanswered – how many clusters are there?
How big are they? Where are they? For that rea-
son approaches to disease clustering which
employ an explicit model have some advan-
tages. Recent work by Lawson & Clark (1999)
typifies that kind of approach. In the case event
situation they suggest extending the kind of
case event model discussed in relation to dis-
ease mapping in Section Mapping Case Event
Data to: 

µ(s) = απ(s)m(s; κ, �1 , . . . , �κ, �)

where, as before, µ(s) is the intensity of disease
cases, π(s) is that of the population at risk and
α is an overall disease rate, but now the previ-
ous unknown relative risk surface ρ(s) is re-
placed by the specified function m(·) which is
parameterised in terms of an unknown num-
ber of clusters, κ, a corresponding unknown set
of cluster locations, (�1 , . . . , �κ ), and a set of
further parameters, �, which relate to the risk
decay around clusters. 

For example, one possible specification for
such a model might be:

µ(s) = απ(s) {1 + Σ
κ

k=1

e-(s - �κ2)/2ν2

}√2πν

In that case, it has been suggested that π(s)
be estimated from a set of controls using non
parametric density estimation with a suitable
bandwidth τ(τ can be derived separately or con-
sidered an additional unknown parameter in
the Bayesian framework). Given such an esti-
mate, π̂(s), MCMC methods are then used to es-
timate the joint posterior for all the remaining
unknown parameters involved. Note that since
the number of parameters depends on κ, which
is itself a parameter, then this model is like a
Bayesian mixture model with an unknown
number of components and “reversible jump”
MCMC sampling must be used (e.g see Richard-
son & Green, 1997). This model for case event
data can be further generalized to allow for co-
variates and random effects in m(·). It can also
be adapted for use with aggregated data con-
sisting of counts yi in areas Ai with means µi via:

µi = ∫Ai απ(s)m(s; κ, �1 , . . . , , �κ, �)ds

Details of how this is handled in a MCMC
framework are provided in Lawson & Clark
(1999) and Lawson et al. (1999a).

Assessment of focussed clustering

As for general clustering, several hypothesis
tests for focussed clustering have been pro-
posed. Some of the most commonly used tests
with associated references are listed below. 

For aggregated data, key hypothesis testing
approaches for focussed clustering include
those discussed by: Besag & Newell (1991);
Stone (1988) (the focussed version of the gener-
al clustering test); Bithel (1995); Lawson (1993);
and Waller & Lawson (1995). Corresponding
tests for case event data include those dis-
cussed by: Cuzick & Edwards (1990); Stone
(1988) (the focussed version of the general
clustering test); Diggle & Elliot (1995); Korie et
al. (1998); and Lawson & Waller (1996). 

Again explicit modelling approaches have
advantages if it is possible to use them, and the
kind of models discussed in Section Assessment
of General Clustering can be used with pre-
specified cluster locations (e.g. see Lawson,
1995). In the simplest situation for case event
data with a single putative source at known lo-
cation S0, a suitable model might take the form: 
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µ(s) = απ(s) (1 + ν1 e-ν2 s - s0 )

MCMC methods are then used to estimate ν1

and ν2 with π(s) estimated from a set of controls
using non parametric density estimation with a
suitable bandwidth τ (τ can be derived separate-
ly or considered an additional unknow parame-
ter in the Bayesian framework). Extensions to
include covariates can also be developed.

Earlier work by Diggle & Rowlingson (1994)
and Diggle et al. (1997) uses a similar model,
but avoids the density estimation of π(s) by fo-
cusing on the probability that an event is a dis-
ease case in the combined point process con-
sisting of both cases and controls, as discussed
previously in Section Maping Case Event Data.
The model for a single source at known loca-
tion s0 is taken as:

µ(s) = απ(s)(1 + m(s - s0 ;�)

where m(.) is a suitably chosen function to re-
flect risk decay around the source. As before,
binary values yi = 1 if point is a disease case and
yi = 0 if it is not. Then if 

φ(s) =
µ(s)

µ(s) + π(s)
denotes the probabilty that any point is a dis-
ease case, we have:

logit (φ(s)) = log ( µ(s) ) = log α+ log (1 + m(s – s0 ; �)π(s)

So π(s) has been “conditioned out” of the mod-
el and logistic regression with a binary response
may be used to estimate the parameters �. This
is a non-linear regression, but with a suitable
choice of m(.) maximum likelihood estimation
is relatively straightforward. Biggeri et al. (1996)
provide details of a case study which employs
this kind of model. 

Further issues and approaches 
in disease clustering studies

There are several further extensions and varia-
tions relating to disease clustering studies. Some
of the most significant issues that have been con-
sidered are listed below with relevant references. 

Local indicators of association (e.g. Anselin,
1995; Getis, 1992) are general exploratory meth-
ods for spatial data which may have potential
application in the preliminary phase of disease
clustering studies. Models (rather than signifi-
cance tests) that have relevance to spatio-tem-
poral disease clustering investigation are dis-
cussed by Bernardinelli et al. (1995b); Knorr-
Held & Besag (1998). Edge effect considera-
tions in disease clustering are discussed by

Lawson et al. (1999b). Cressie (1996) discusses
inference for extreme values in general with
relevance to cluster detection. Methods for in-
corporating directional or scale effects in the
effects to be expected from putative sources of
hazard have also been developed (e.g. Lawson
& Viel, 1995; Waller & Turnbull, 1993). Jacquez
(1996a) also discusses how uncertainy in the
location of suspected sources of hazard may be
handled. 

Environmental assessment 
and monitoring

There are many known or suspected environ-
mental factors that influence health (e.g. nu-
clear contamination, chemical toxins, air pol-
lution, climatic or vegetation conditions that
may influence distribution of disease vectors
etc.). The quantity and quality of data on the
environment is constantly increasing, particu-
larly that from remote sensing platforms. Sta-
tistical models of environmental processes
(e.g. see Piegorsch et al., 1998) allow spatial or
spatio-temporal prediction of environmental
factors which may then be used in conjunction
with studies concerned with investigating dis-
ease aetiology or establishing public health
intervention programmes (e.g. see Diggle &
Richardson, 1993). The environmental process-
es under study usually exhibit strong local spa-
tial, temporal and exogenous variability which
needs to be allowed for in prediction models.

Environmental modelling is a very wide
field and there is not space to discuss it in de-
tail here. In general, remote sensing and image
processing techniques increasingly play a key
role (e.g. see Besag et al., 1991; Datcu et al.,
1998; Schroder et al., 1998; Stein et al., 1998b)
as do advances in modelling of Markov Ran-
dom Fields (e.g. see Aykroyd, 1998; Cressie &
Davidson, 1998; Tjelmeland & Besag, 1998).
Many of the models used in environmental
analysis adopt a Bayesian approach (e.g. see
Besag & Green, 1993; Christakos & Li, 1998;
Gaudard et al., 1999). In some cases there is a
need to particularly focus on the prediction of
threshold values of a phenomena in which case
extreme value modelling (e.g. see Coles & Pow-
ell, 1996) may be necessary. Many studies in-
volve spatio-temporal data (e.g. Kyriakidis &
Journel, 1999; Stein et al., 1998a; Wikle et al.,
1998). Other related areas include spatial sam-
pling considerations (e.g. see Cox et al., 1997)
and a need for versatile exploratory methods
for spatial and space-time environmental data
(e.g. Cook et al., 1997). 
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One recent general development concern-
ing spatial prediction models is worthy of par-
ticular note here since it may have consider-
able potential in relation to health studies. The
methodology of “kriging” in its many various
guises (e.g. see Cressie, 1993), provides a versa-
tile prediction tool for many geostatistical
processes in space, or in space and time, and
has usefully been employed in the prediction
of environmental processes. However, kriging
is conventionally concerned with prediction of
Gaussian spatial or spatio-temporal process
(e.g. it can over smooth when distribution is
non-Gaussian). A significant recent develop-
ment (Diggle et al., 1998) is the generalization
of this methodology to situations in which data
is non-Gaussian. The essential idea embeds
linear kriging methodology within a non-linear
and more general distributional framework,
analogous to the embedding of standard least
squares regression within the framework of
generalized linear models (GLMs). A Bayesian
approach, implemented through MCMC meth-
ods, is then used to fit the associated model.
Diggle et al. (1998) provide details and applica-
tions of the approach. 

Software in geographical/
environmental epidemiology

A recurring theme in this paper is the compu-
tationally intensive nature of many of the sta-
tistical methods discussed. In this section some
of the key software environments that exist to
support the use of these methods are briefly
discussed. 

One computing environment which now
dominates in much of the literature concerned
with statistical methods in geographical epi-
demiology (as in many other areas of statistical
analysis) is the versatile statistical computing
language S-Plus (or the freely available public
domain similar language R). A number of “add
on” S-Plus packages particularly orientated to
spatial applications are also available, in par-
ticular S+Spatial and S+GeoStat. The former in-
cludes several general purpose routines for
spatial analysis, including point pattern analy-
sis, some forms of spatial regression and sim-
ple kriging; whilst the latter is orientated more
to geostatistical modelling. There are also a
number of relevant public domain S-PLus li-
braries of functions supplied by third parties
such as: SPLancs (point pattern analysis), geoS
(geostatistical functions), Oswald (longitudinal
data analysis) and spatial (basic spatial statis-
tics). Many other relevant Splus functions (or

groups of functions) are also available on the
Internet from many individual contributors.
Some of the above functionality is also avail-
able for R the public domain version of Splus. 

S-plus or R do not in themselves provide for
MCMC methods. Functionality in this area is
provided by BUGS (Spiegelhalter et al., 1997)
or, more recently, WinBUGs, both available in
the public domain. These packages are able to
implement many of the Bayesian models dis-
cussed in earlier sections of this paper. A pub-
lic domain link between BUGS and S-plus also
exists known as CODA which enables results
from BUGS to be easily transferred to S-plus for
subsequent analysis. 

S-Plus, R and BUGS provide no direct abili-
ty to geographically visualize or map spatial re-
sults (although a Geo BUGS add-on is forth-
coming). For that purpose it is necessary to use
them in conjunction with a suitable Geograph-
ical Information System (GIS). The most com-
monly used packages in this regard in the health
area are probably ARC/INFO and/or ARC/View
(ESRI, 1996) and MapInfo (MapInfo Corpora-
tion, 1994). S-Plus provides a link to Arc/View
which allows results to be transferred and
mapped relatively easily. More special purpose
computing packages for particular kinds of
analysis relevant in geographical or environ-
mental epidemiology include: ECOSSE (geosta-
tistical/environmental modelling); DisMapWin
(epidemiological mixture models – Schalttmann
et al., 1996); MLWin (multi-level modelling);
and Stat!, Gamma or SatScan (each relating to
various types of spatial disease clustering tests
and associated analysis). Full details of the var-
ious packages or libraries mentioned in this
section are easily available through the Inter-
net and those references are not repeated here. 

Some closing remarks on statistical
methods in geographical and 
environmental epidemiology

Given the rich variety of methods discussed in
this paper, it is clear that the “state of the art”
in statistical methods appropriate to certain
problems in spatial epidemiology contains
some powerful, versatile and useful tools. Re-
search interest is strong and undoubtedly fur-
ther developments and more sophisticated
techniques will continue to develop. Many of
the existing spatial methods and models are
fairly widely known in the statistical communi-
ty and some of them have been in use for sev-
eral years. Spatial methods are less familiar
amongst epidemiologists and public health
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specialists, but there are now a number of ac-
cessible texts, both on general introductory
spatial analysis (e.g. Bailey & Gatrell, 1995), on
more advanced spatial statistics (e.g. Cressie,
1993), on general statistical modelling (e.g.
Venables & Ripley, 1994) and on MCMC meth-
ods (e.g. Gilks et al., 1996). These and similar
texts, combined with the increasing amount of
published work more specifically related to
spatial epidemiology (as referenced in this pa-
per), means that relevant methods and access
to supporting software environments are now
becoming better disseminated to health spe-
cialists. Hopefully that situation will continue
to improve and spatial methods and models
will be increasingly used where appropriate. 

Reflection on the methods discussed in the
paper does however reveal some areas which
emerge as significantly “under played” amongst
the “mainstream” methods and models. These
include: a greater requirement for methods ca-
pable of handling mixtures of data types (e.g.
at different levels of aggregation, or mixtures of
case event and aggregated data, or a combina-
tion of information from remotely sensed im-
agery with that from more conventional health
or demographic data sources); methods de-
signed to better address the problem of ecolog-
ical bias of various types; methods to better
handle the spatio-temporal considerations pre-
sent in many studies; the fact that there is cur-
rently a relative absence of methods designed
to handle multivariate spatial responses; and
also that the current spatial methods place a
heavy reliance on the Euclidean distance met-
ric combined with relatively crude topographic
assumptions despite the potentially powerful
functionality that GIS can now provide in that
area. 

Such areas provide a rich agenda for further
study and some related exciting and diffcult
challenges, particularly in the area of the mul-
tivariate study of groups of related diseases in
spatial epidemiology and in incorporating
more realistic and sophisticated measures of
spatial proximity and spatial structure into
models which appropriately exploit the de-
tailed geographical information which is now
available through GIS and remotely sensing. 

In concluding this review of spatial statisti-
cal methods in health it is also appropriate to
comment briefly on some wider and less statis-
tical issues. The first point to acknowledge is
that geographical epidemiology is epidemiolo-
gy first and foremost and not statistics. Valu-
able spatial epidemiology does not necessarily
follow from the use of better and more sophis-
ticated statistical methods. Clearly, the ulti-

mate benefits of all the statistical effort in geo-
graphical epidemiology also depends crucially
on appropriate and well-founded epidemio-
logical considerations combined with access to
data at an appropriate level of detail and of suf-
fcient quality to address the issues under con-
sideration. The value of clear-cut, well designed
geographical epidemiological studies associat-
ing disease with specific agents are not contro-
versial. However, regardless of the sophistica-
tion of the statistical models employed, gener-
al geographical studies of widespread risk fac-
tors usually come up with relatively low rela-
tive risk estimates (resulting from low grade ex-
posure, the diffculties of obtaining good expo-
sure contrasts, and the problems of confound-
ing effects). This can cause credibility prob-
lems for the results and limit their implications
for public health response. For example, of the
hundreds of “disease clustering” investigations
conducted there are only a few examples of re-
al “success” in terms of substantive advances
in aetiological knowledge, or developments in
public health (e.g. see Neutra, 1990). 

Ultimately, geographical/environmental
epidemiology needs to be evaluated in the
same way as any other public health screening
programs (e.g. see Axelson, 1999, Neutra, 1999).
In some such applications which involve the
spatial statistical analysis of already existing
data, or that arise from routine collection sys-
tems, the “screening” is relatively cheap. How-
ever, this has to be balanced against the impli-
cations of false positive findings, the potential
for effective intervention in cases of true posi-
tive findings, and the costs of the follow up and
more focussed studies that will inevitably be
necessary in such cases. Such considerations
are important and whilst they do not mitigate
against the development and use of improved
statistical methodology, they do emphasize
that the value of such methods has to be viewed
in the context of a wider and ultimately more
complex set of public health and epidemiolog-
ical concerns.
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