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Abstract Endocrine disruption is a hypothesis of common mode of action that may define a set
of structurally varied chemicals, both natural and synthetic. Their common mode of action may
suggest that they produce or contribute to similar toxic effects, although this has been difficult to
demonstrate. Insights from developmental biology suggest that development of hormone sensi-
tive systems, such as the brain and the genitourinary tract, may be particularly sensitive to EDCs.
Because these systems are both organized and later activated by hormones, the brain and vagina
may be valuable model systems to study the toxicity of EDCs in females and to elucidate mecha-
nisms whereby early exposures appear to affect long term function.
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Resumo A desregulagdo enddcrina é uma hipdtese de um modo de a¢do comum capaz de defi-
nir um conjunto de substdncias quimicas estruturalmente variadas, tanto naturais quanto sin-
téticas. O modo de agdo comum pode sugerir que produzam ou contribuam para efeitos to6xicos
semelhantes, embora tal hipdtese tenha sido dificil de demonstrar. Evidéncias provenientes da
biologia do desenvolvimento sugerem que o desenvolvimento de sistemas sensiveis aos hormo-
nios, tais como o cérebro e o trato genito-urindrio, podem ser particularmente sensiveis aos des-
reguladores enddcrinos. Uma vez que tais sistemas sdo organizados, e depois ativados, por hor-
monios, o cérebro e a vagina podem representar modelos importantes para estudar a toxicidade
dos desreguladores enddcrinos e para elucidar os mecanismos pelos quais parecem afetar a fun-
¢do a longo prazo.
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The identification of preventable risks to hu-
man reproduction offers important opportuni-
ties to ensure health over generations. Recent-
ly, considerable public concern has focused on
the potential for chemicals to interfere with re-
production by interrupting endocrine func-
tion. These endocrine disrupting chemicals
(EDCs) include many naturally occurring or
synthetic chemicals that are proposed to share
a common mode of action by interfering with
the normal molecular circuitry and function of
the endocrine system. EDCs of varying potency
may be present in the environment, and expo-
sure to these substances may be related to ad-
verse effects reported in wildlife and humans
(Colborn et al., 1996; Cooper & Kavlock, 1997;
Hose & Guillette, 1995; Longnecker et al., 1997;
McLachlan & Arnold, 1996; NRC, 1999; Toppari
& Skakkebaek, 1998).

Although several endocrine systems may be
targets for chemicals (Colborn et al., 1998),
much of the attention has focused on chemi-
cals that interfere with normal estrogen func-
tion. EDCs that act on the estrogen component
of the endocrine system merit serious concern
because estrogen has major effects on mam-
malian reproduction and neurological func-
tions. Estrogen is also critically important for
guiding the normal functional and structural
development of many target organ systems in
mammals, with effects on both growth and dif-
ferentiation.

Particular concern has been raised over the
long-term effects of such exposures during de-
velopment (Colborn et al., 1996; NRC, 1999).
The existence of critical periods during organo-
genesis and the sensitivity of developmental
processes to relatively small and fleeting
changes in endogenous steroid levels suggest
that endocrine disruption during development
may have long lasting deleterious effects. Some
of the current literature associating environ-
mental endocrine disruptors with human health
effects cites possible increases in breast, testic-
ular, and prostate cancer, some birth defects,
and behavioral dysfunction in children (Hook,
1994; Jacobson & Jacobson, 1996a; Koopman-
Esseboom et al., 1996; Longnecker et al., 1995;
Toppari & Skakkebek, 1998). However, others
have pointed to inconsistencies in these stud-
ies (NRC, 1999; Safe, 1995).

The potential for exogenous estrogenic
agents to cause significant effects on develop-
ment and long term function of estrogen-sen-
sitive tissues is exemplified by the devastating
sequelae of in utero exposure to the estrogenic
drug, diethylstilbestrol (DES). In humans, DES
exposure during prenatal life has been associ-

Cad. Saude Publica, Rio de Janeiro, 18(2):495-504, mar-abr, 2002

ated with structural dysmorphogenesis of the
reproductive tract and increased risk of vaginal
cancer during postnatal life (Berger & Gold-
stein, 1980; DeMars et al., 1995; Herbst et al.,
1971). In rodents, prenatal DES exposure caus-
es genital dysmorphogenesis and carcinomas
(McLachlan et al., 1980). Thus, one of the deep-
est concerns relating to environmental en-
docrine disruptors is that they may induce per-
sistent or irreversible effects on developing or-
ganisms (Colborn et al., 1996).

Exposure to estrogenic endocrine disruptors
during development may have both organiza-
tional and activation effects. Organizational ef-
fects refer to permanent changes in morpho-
genesis and differentiation of organ systems.
Characteristically, organizational events are
precisely timed and can only be influenced by
exposure, endogenous and exogenous, during
critical periods that are defined by organ-spe-
cific morphogenetic timetables. These events
are often observable at the structural level. Ac-
tivation effects of hormones relate to the re-
sponses of cells and organ systems after differ-
entiation and organization. These include the
normal, often cyclical physiological functions
for which hormones are the signals throughout
life. Usually these effects are transient in na-
ture, unless they induce damage to tissues that
synthesize or respond to hormones, such as
the primordial follicles of the ovary or the Ser-
toli cells of the testis. Organizational and acti-
vation effects, while separate, are often linked:
activation responses to hormones can be con-
ditioned by earlier organizational exposures
during development. Thus, developmental ex-
posures to estrogenic endocrine disruptors
may have both immediate effects on develop-
ment by interfering with normal organization-
al differentiation, with long lasting deleterious
effects, and delayed or latent effects that are re-
vealed later in response to endogenous hor-
mones at maturity. These delayed effects may
be undetectable at the time of exposure and
may not affect structural development, but
they may be unmasked later in life with normal
changes in endocrinology, such as the rising
levels of gonadal hormones at puberty.

These insights from developmental biology
suggest that early exposures to endocrine dis-
ruptors may reprogram later responses to en-
dogenous hormones over the lifespan, such
that some of the most serious effects of these
agents may be manifested long after exposure
occurs. While “reprogramming” has been pro-
posed as an explanation for some of the effects
of endocrine disruptors and estrogens (New-
bold, 1995; Palanza et al., 1999a; Singh & Han-



delsman, 1999), the molecular mechanisms by
which this occurs are not well defined. “Repro-
gramming” is not the same as a persistent or ir-
reversible alteration in structure or function; it
can be defined as a consequence of develop-
mental exposures, such that the functional re-
sponses of target tissues at maturity are altered
in the presence of normal changes in levels of
gonadal hormones. It is not known whether
those “reprogramming” events occur at genom-
ic or nongenomic levels. In addition to direct
alteration in target genes, early exposures could
in some way affect binding of estrogens to re-
ceptors which then alters transcription events
or these exposures could affect other compo-
nents of signal transduction pathways either
prior or subsequent to transcription activation.

Targets for organizational
and activational effects of EDCs

The development of the male and female geni-
tourinary system is an example of hormonal
determination of sex-typic organization from
the embryonic “indifferent” state into the male
or female phenotype. In humans and rodents,
both the brain and vagina are exquisitely sensi-
tive to circulating hormone concentrations for
appropriate differentiation. In addition, at ma-
turity, both tissues continue to respond to es-
trogens at the molecular, cellular, and func-
tional level, and these responses are integral to
successful reproductive and neurological func-
tion over the life span. For that reason the vagi-
na and central nervous system (CNS) may be
candidates for both organizational and activa-
tion effects of estrogenic endocrine disruptors,
and they may serve as model systems for mech-
anistic research to understand the events in-
volved in “reprogramming”.

The critical role of hormones in the devel-
opment of these systems is evident in genetic
and nongenetic intersex syndromes resulting
from inappropriate hormone or drug exposure
in utero. Congenital hypospadias and unde-
scended testicles are suspected as sequelae to
prenatal hormone exposures in male fetuses
(Toppari & Skakkebaek, 1998). The clinical syn-
drome of congential adrenal hyperplasia (CAH)
offers human evidence of sensitivity of the de-
veloping brain to intrauterine hormone expo-
sure. CAH involves genetic mutations that re-
sult in excess testosterone production. CAH
girls express “boy-typic” behaviors and “boy-
typic” performance on neuropsychological tests
(Berenbaum, 2001). Heterozygote twins of CAH
girls present behavioral characteristics that are
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intermediate to “girl-typic” and “boy-typic”
phenotypes, suggesting that sharing the in-
trauterine environment with a twin producing
high levels of testosterone that can affect brain
development.

The vagina responds morphologically and
functionally in response to fluctuations in es-
trogen levels throughout the life span. Vaginal
opening is a clear-cut, easily measurable exam-
ple of an estrogen-dependent event critical to
the development of the reproductive system.
At birth, the rodent vaginal canal is closed to
the outside environment by stratified epithelial
cells (Gitlin, 1974). During development, the
vagina in the rodent responds to rising endoge-
nous estrogen levels at puberty and the solid
cells of the vaginal canal are deleted, resulting
in an opening (Elger, 1978; Ojeda et al., 1980).
The role of estrogen in vaginal opening is clear-
ly demonstrated. Neonatal injection of estro-
gen causes early vaginal opening in a dose-de-
pendent fashion (Del Vecchio, 1982; Hisano,
1971). Manipulations that stimulate or inhibit
the immature ovary to produce estrogen also
alter timing of vaginal opening (Justo et al.,
1970; Ojeda et al., 1980). The molecular mech-
anism by which estrogen induces vaginal open-
ing in the rodent is not known. Vaginal opening
may occur as a result of estrogen-induced ter-
minal cell differentiation in a target cell popu-
lation leading to cell loss (Gitlin 1974), or vagi-
nal opening may result from programmed cell
death that causes a deletion of specific epithe-
lial cells that form the vaginal plate (Gray Jr. &
Ostby, 1995).

While there are some similarities between
the human and rodent vagina, one major dif-
ference is that rodents are born with a closed
vagina that opens at puberty, whereas humans
are born with an open vaginal canal (Moore &
Persaud, 1993). The same development events
occur in humans, but prior to birth. In humans,
the vagina begins to open by 16 weeks gesta-
tion (Moore & Persaud, 1993). At this time, the
cells in the center of the solid vagina begin to
disintegrate causing the formation of a lumen,
which begins in the lower portion of the vagi-
nal plate and proceeds upward. Formation of
the lumen is usually complete by 18 weeks ges-
tation when it meets with the cervical canal
and the pelvic portion of the urogenital sinus
(Moore & Persaud, 1993), Some estrogenic chem-
icals such as DES and the pesticide chlorde-
cone alter the timing of vaginal opening (Laes-
sig et al., 1999; McLachlan et al., 1980). The en-
docrine disrupting chemical 2,3,7,8-TCDD can
have major permanent effects on the morpho-
genesis of the genitourinary tract. In rats and
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guinea pigs, intrauterine exposures to 2,3,7,8-
TCDD results in a vaginal “web”, an externally
visible tissue that occludes the vaginal opening
(Flaws et al., 1997; Gray Jr. & Ostby, 1995). We
have shown that this birth defect originates in
utero, soon after exposure to TCDD, and repre-
sents the failure of the Wolffian ducts to regress
in the female, resulting in a persistent mes-
enchymal remnant that prevents complete for-
mation of the vaginal sinus (Dienhart et al.,
2000). This toxic effect of TCDD thus represents
an organization effect of exposure; it is limited
in timing in that postnatal exposures, after the
critical period of organogenesis, do not induce
vaginal webs. Thus, rodent vaginal develop-
ment can serve as a paradigm for studying the
effects of endocrine disruptors on estrogen tar-
get tissues in humans that undergo their final
elaboration during postnatal life.

The vagina of both rodents and humans re-
mains exquisitely sensitive to circulating estro-
gens over the menstrual or estrous cycle. The
vagina has been used as an endpoint for study-
ing estrogenicity of compounds for nearly 75
years and is among the most specific in vivo
endpoints available for determining the estro-
genic character of a compound (Allen & Doisy,
1923). In response to estrogen, the vaginal ep-
ithelium thickens and cornifies (Elger, 1978).
The rodent vagina is also sensitive to estro-
genic EDCs. In mice, neonatal administration
of methoxychlor, bisphenol A, and several oth-
er halogenated pesticides causes highly kera-
tinized vaginas (Gellert, 1978; Gray et al., 1999a;
Nagao et al., 2000). DES also causes highly ker-
atinized vaginas, vaginal hypospadias, and
vaginal tumors (Newbold, 1995). Interestingly,
the murine vaginal adenocarcinomas were sim-
ilar morphologically to the tumors seen in hu-
mans exposed prenatally to DES (Newbold,
1995). This provides further evidence that the
rodent vagina may serve as a model for study-
ing the effects of EDCs on the human vagina.

The brain is also highly responsive to estro-
gen exposure during development and over the
life span (Chowen et al., 2000; Cooke et al.,
1998). Estrogens have powerful organizational
effects on the development of the rodent CNS
during critical periods of perinatal develop-
ment through the modulation of several key
molecular events: neurite development (Pa-
trone et al., 2000); expression of neurotrophic
factors (Jerzierski & Sohrabji, 2000), and regu-
lation of apoptosis (Maggi, 2000; Nilsen et al.,
2000; Sawada et al., 2000). In vivo, these effects
depend upon the presence of gonadal hor-
mones and the distribution of hormone recep-
tors within brain regions. In the rodent, be-
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cause of sex-typic differences in hormone pro-
duction and hormone receptors, the organiza-
tional effects of estrogen on the morphology
and cytoarchitecture of specific brain regions
differ between males and females. This results
in a permanent sexual dimorphism of the CNS
that is modulated by later experience (Arnold
& Breedlove, 1985). In the rodent, dimorphism
is driven by prenatal estrogen exposure. The
male gonad is activated just prior to and after
birth, giving rise to increased circulating levels
of testosterone. The male CNS is “masculin-
ized” and “defeminized” by exposure to estro-
gens produced by aromatization of testos-
terone released from the fetal male gonad
which results in estrogenization of the CNS due
to the higher levels of aromatase in the brain of
males (Dohler et al., 1984; Karolczak et al.,
1998). In the female rodent, the lack of either
testosterone or estrogen results in sex-typic
brain development of the female. The female
gonad is not activated by CNS signals until pu-
berty. In primates, androgens are the organiz-
ing hormones. Nevertheless, sexual dimor-
phism in structure and tissue composition has
been shown in humans (Nopoulos et al., 2000)
so that studies in rodents are relevant to hu-
man developmental biology.

Administration of estrogen or estrogenic
compounds, such as diethylstilbestrol, can
“masculinize” and “defeminize” the brain of fe-
male rodents; antagonism of estrogen by ta-
moxifen or blocking the conversion of testos-
terone to estrogen (via inhibition of aromatase)
prevents the “masculinization” of the brain in
male rodents (Dohler et al., 1984). The sensitiv-
ity of brain development to small differences in
gonadal hormones has been demonstrated by
studies of the effects of intrauterine position
on the brain and behavior. Intrauterine posi-
tion in multiparous rodents results in small,
but physiologically significant variations in
levels of hormonal exposure. Thus a female fe-
tus between two males is exposed to higher
levels of testosterone (secreted by the male fe-
tuses) as compared to a female fetus between
to females, and this is associated with signifi-
cant differences in the size of sexually dimor-
phic nuclei in the brain and in reproductive
and other behaviors (vom Saal, 1989; reviewed
by Palanza et al., 1999a).

However, reported effects of estrogen and
EDCs on brain structures are somewhat con-
tradictory, especially in male rodents. Expo-
sures of females is consistently associated with
increases in the size of the sexually dimorphic
nucleus of the preotpic area (SDN-POA). How-
ever, in some studies estradiol is reported to in-



crease the size of the SDN in males, but most
studies report no changes. The mechanism by
which estrogen results in increased size of the
SDN in females treated with estrogens (or in
males with higher levels of estrogen in the CNS
from the endogenous production of testos-
terone) involves a protection against apoptosis
which spares the SDN in males from postnatal
neuronal loss (Davis et al, 1996; McCarthy,
1994). Interestingly, a similar mechanism may
be involved in the vagina (Berman et al., 1998).
We have found that prenatal exposure to the
estrogenic pesticide chlordecone also inhibits
postnatal apoptosis in the SDN of female rats.
However, at low single doses, this effect is only
partial, resulting in a delay rather than elimi-
nation of cell death, which suggests that these
organizational effects can be gradated. In con-
trast, the effects of prenatal chlordecone on ac-
tivation responses of the CNS appear to be per-
manent. Alterations in sex behaviors in re-
sponse to gonadal hormones, and activity pat-
terns in post pubertal rats are significantly dif-
ferent in female rats exposed in prenatal to
chlordecone (Laessig et al., 1999).

Because of this, it has been hypothesized
that the developing CNS may be a sensitive tar-
get for intrauterine exposures to estrogenic
chemicals in the environment (Colborn et al.,
1998; Laessig et al., 1999). Support for this hy-
pothesis may be found in studies of intellectu-
al impairment in children exposed to polychlo-
rinated biphenyls in utero (Jacobson & Jacob-
son, 1996; Koopman-Esseboom et al., 1996).
Studies have also found morphometric abnor-
malities in birds exposed in the wild to poly-
chlorinated biphenyls (Henschel et al, 1995).

Associated with structural dimorphism,
there are many behaviors in rodents that are
related to early hormonal exposure during de-
velopment (Beatty, 1979; Ward, 1992). Many of
these exposures affect later behavioral respons-
es to hormones, such as lordosis and mounting
(Gandelman et al., 1979), but there are also well
characterized and spontaneously expressed
differences between male and female mice in
play behavior, aggression, learning, activity and
exploration, and response to novelty (Berger-
Sweeney et al., 1995; reviewed by Palanza et al.,
1999a). Intrauterine exposure to bisphenol A,
DDT, methoxychlor, and other estrogenic EDCs,
can disrupt neurological development and the
expression of dimorphic behaviors in mature
rats and mice (Colborn et al., 1998; Ericksson
et al., 1992; Farabollini, et al., 1999; Gray et al.,
1996b; Laessig et al., 1999; Palanza et al., 1999b;
vom Saal et al., 1995). Ethological behaviors
such as urine marking, conspecific aggression,
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and response to novelty were found to be sen-
sitive indicators of altered CNS function (Par-
migiani et al., 1998).

The CNS, like the vagina, remains respon-
sive to estrogens throughout the lifespan (re-
viewed by Chowen et al., 2000). There is con-
siderable interest in the neuroprotective effects
of estrogens and the relationship between es-
trogen and dementia (Garcia-Segura et al, 2001;
Pike, 1999; Wise, 2000). In rodents, administra-
tion of estrogen has significant effects on neu-
rochemistry, synaptic and glial morphology,
and behavior (DeRyck et al., 1982; Hruska &
Nowak, 1988; Hruska & Pittman, 1982; Hruska
et al.,, 1982; Mong et al., 1999; Perez et al., 1986;
Rupprecht et al., 1996). Estrogen may affect
both activational and organizational events
through specific neurotransmitter pathways,
including GABA (Davis et al., 1996) and neu-
ropeptides, such as granulin and galanin,
whose expression is sexually dimorphic and re-
sponsive to estrogen (Rajendren et al., 2000;
Suzuki et al., 2001). At maturity, estrogen expo-
sure may promote lordosis behavior by inhibit-
ing serotonin release from the hypothalamus
(Luine et al., 1999). Estrogen may also directly
regulate serotonin levels in the dorsal raphe in
guinea pigs (Lu et al., 1999) and macaques
(Bethea et al., 2000) by increasing levels of
tryptophan hydroxylase.

Molecular mechanisms of EDCs
on organization and activation

Many estrogenic EDCs are defined by analogy
to 17B-estradiol in terms of activity at estrogen
receptors (Biegel et al., 1998; NRC, 1999), al-
though there are other mechanisms — involving
distribution and metabolism - that may result
in estrogenic effects in vivo (Cooper & Kavlock,
1997). There are many studies of EDCs in terms
of effects on ER binding and gene expression
and on their effects in specific organs, such as
the vagina (Papaconstantinou et al., 2000), and
some studies on organism-level effects (NRC,
1999). However, there are few, if any, investiga-
tions integrating these effects from the molec-
ular through the functional level. This has
made it difficult to interpret the role of molec-
ular events in organism-level function.

At the molecular level, estrogens are hy-
pothesized to act by binding to intracellular cy-
tosolic receptors, which may now include sev-
eral distinct subtypes, and in connection with
molecular chaperones and other factors translo-
cate to the nucleus and induce up- or down-
regulation of specific genes (Katzenellenbogen
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et al., 1996). Many genes have been linked to
ER binding, including progesterone and estro-
gen receptors, cyclins, inhibins, lactoferrin,
growth factors, several CYP450 genes, heat
shock proteins, early response genes (c-fos, c-
jun), Bcl-2, iNOS, and several differentiation
signals. A recent study of global gene expres-
sion in which 12,550 identified genes were
monitored by microarray found that about 65
showed an increase in expression of = 3 fold in
the presence of estrogen (Charpentier et al.,
2000). However, the expression of estrogen-
regulated genes varies by cell and tissue (Choi
et al., 2000; Zajchowski et al., 2000).

Both ERa and ERp are represented in the
vagina and central nervous system (Couse et
al., 1997; Osterlund et al., 2000; Shugrue et al.,
1997). Despite the importance of the brain and
vagina as estrogen target tissues, relatively lit-
tle is known about the role of these two estro-
gen receptor isoforms, ERa and ERp, during
development of these tissues (Osterlund et al.,
2000; Shugrue et al., 1997). Data from the ERa
knockout (ERKO) mouse model indicate that
ERa is critical for mediating estrogen-induced
vaginal proliferation and keratinization during
postnatal life (Cooke et al., 1998; Couse & Ko-
rach, 1999). Studies in ERKO mice have also
demonstrated the role of ERa in the normal
ontogeny and expression of behavior (Ogawa
etal,, 1997; Rissman et al., 1999).

Little is known of the molecular mecha-
nisms by which early exposure to estrogen or
EDCs could alter later and activation respons-
es. There is some evidence that certain EDCs
may interact with estrogen receptors some-
what differently from endogenous estrogens
(Gould et al., 1998). The following concepts are
proposed as possible avenues for research.

1) Structural alterations — One consequence
of significant organizational effects on the
structure of hormonally sensitive organs could
be an alteration in later responses. For exam-
ple, if early exposure of the brain or vagina re-
sults in decreased apoptosis (such as the ef-
fects of TCDD on the vagina or estrogens in
brain), then the continued presence of estro-
gen-responsive cells could influence later or-
gan responses to normal levels of estrogens.

2) Genomic imprinting and gene silencing
— Genomic imprinting refers to the differen-
tial expression of genetic alleles, usually stud-
ied in the context of understanding the role of
paternal or maternal genotype and its contri-
butions to phenotype. Patterns of DNA methy-
lation influence gene silencing as well, in
which methylation of intron sequences can
result in either the expression of a paternal al-
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lele or in gene silencing, a functional deletion
of the gene.

EDCs could affect gene expression by alter-
ing patterns of DNA methylation. Since some
methylases appear to be differentially ex-
pressed in males and females, it is possible that
an organizational effect of early hormone or
EDC exposure could result in a heterotypic ex-
pression of the methylase which would then
influence a later response of imprinted genes
to hormones. McLachlan et al. (2001) have re-
ported evidence for changes in DNA methyla-
tion patterns after exposure to estrogen and di-
ethylstilbestrol. However, whether these changes
are associated with altered activation respons-
es to estrogen is not known.

3) Post-translation effects — The CYP450
family includes many key enzymes in steroid
biosynthesis. Expression of these and other
CYP450 genes is known to differ between males
and females. Early exposures to estrogens and
androgens is reported to alter sex-typic pat-
terns of gene expression and enzyme activity.
One result of this organizational effect if im-
pacted by EDC exposure during development,
could be alterations in sex hormone metabo-
lism at maturity. Increased estrogen biosynthe-
sis, or decreased enzymatic catabolism, could
clearly affect target organ responses by in-
creasing the amount and duration of estrogen
exposure within target organs such as the brain
or vagina.

4) Signal transduction — The effects of estro-
gens at the genomic level requires a complex
interaction among liganded, dimerized recep-
tors and many translocator/coactivator pro-
teins. Auger et al. (2000) reported that SRC-1
(steroid recetpor coactivator-1) is required for
the effects of estrogen on sex-specific brain de-
velopment and behavior. This raises the possi-
bility that some of the organizational and acti-
vation effects of EDCs could involve transcrip-
tion regulators and other signal transducing
molecules.

In summary, research on the organizational
and activation effects of EDCs may be valuable
in improving our ability to detect and evaluate
potential toxic impacts of these chemicals in
the environment and also as tools for under-
standing basic mechanisms by which hor-
mone-sensitive systems develop and respond
to endocrinological signals over the life span.
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