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Abstract

In real epidemic processes, the basic reproduction 
number R0 is the combined outcome of multiple 
probabilistic events. Nevertheless, it is frequently 
modeled as a deterministic function of epidemio-
logical variables. This paper discusses the im-
portance of adequate treatment of uncertainties 
in such models. This is done by comparing two 
methods of uncertainty analysis: Monte Carlo 
uncertainty analysis (MCUA) and the Bayesian 
melding (BM) method. These methods are ap-
plied to a model for the determination of R0 of 
dengue fever based on entomological param-
eters. The BM was shown to provide a complete 
treatment of the uncertainties associated with 
model parameters. In contrast to MCUA, the in-
corporation of uncertainties led to realistic pos-
terior distributions for parameter and variables. 
The incorporation, by the BM, of all the available 
information, from observational data to expert 
opinions, allows for the constructive use of un-
certainties generating informative posterior dis-
tributions for all of the model’s components that 
are coherent as a set.

Bayes Theorem; Dengue; Epidemiologic Models; 
Uncertainty

Introduction

Dengue fever is a vector-borne disease currently 
demonstrating patterns of increasing spread and 
virulence. In the early 20th century, with the in-
vention of DDT, the eradication of dengue and 
yellow fever via eradication of their vector be-
came a goal that worked for some time in various 
regions of the world. Reinvasion of these areas 
and increasing resistance to insecticides have 
prompted the development of new strategies, in-
cluding human behavioral changes, local chemi-
cal applications, biological control, etc. As strat-
egies become more complex, the evaluation of 
cost-effectiveness and scenario analysis become 
important 1.

One approach for the comparison of control 
strategies is the development of mathematical 
models that explicitly describe the mechanisms 
involved in the transmission of the pathogen 
between host and vectors. Such models can be 
used to predict the expected number of cases 
under different control scenarios. An important 
summary measure in this context is the disease’s 
reproduction number, R0. For vector-borne 
diseases, R0 is defined as the expected number 
of secondary human infections generated by 
one typical infected human introduced in a to-
tally susceptible population through the vector 
population 2. The greater the R0, the faster the 
disease spreads in the population. The ultimate 
goal of any control effort is to reduce R0 below 1, 
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 1a threshold below which disease tends towards 
extinction.

There are various approaches for estimat-
ing R0. First, one can estimate R0 from epidemic 
data as the growth rate of the epidemic curve in-
creases (number of infected individuals x t), since 
faster epidemics imply a higher R0. Using this ap-
proach, Massad et al. 3 estimated the dengue R0 
for 64 counties (municipalities) in the State of 
São Paulo, Brazil, with values ranging from 2.74 
to 11.57. Uncertainty regarding these values is 
presented as confidence intervals, obtained by 
standard regression procedures.

A second approach is to estimate R0 from a 
mathematical model that expresses the number 
as a function of biological parameters. This mod-
el is built to represent the biological mechanism 
believed to be at work in real epidemics of the 
disease. In this case, the estimation procedure 
involves the definition of a range of “biologically 
reasonable” values for the parameters, and us-
ing the mathematical expression to calculate a 
range of “plausible values for R0”. This proce-
dure is termed uncertainty analysis 4 based on 
the idea of attributing probability distributions 
to the input parameters and generating a prob-
ability distribution for from repeated runs of the 
model driven by a Monte Carlo procedure 1,4,5. 
Here, we will call this approach Monte Carlo un-
certainty analysis (MCUA). A Bayesian version 
of this approach includes likelihood functions 
for the input variables 6. More recently, a new 
methodology called Bayesian melding (BM) was 
proposed by Poole & Raftery 7 to extend both 
the MCUA and its Bayesian version by taking 
full account of all information available and un-
certainty about both inputs and the output (R0) 
of the model.

The goal of this paper is to discuss the im-
portance of incorporating uncertainties into the 
analysis of mechanistic models. To help illustrate 
this point we compare two uncertainty analysis 
methods applied to a model for a dengue epi-
demic’s R0 and discuss how their different perfor-
mance is related to their completeness and the 
underlying conception of the origin of uncertain-
ties. This has implications for scenario analyses 
in dengue control, because it affects how we in-
terpret the results epidemiologically.

The paper is organized as follows: (1) the es-
timation procedures are introduced in terms of 
their main assumptions; (2) application of these 
methods to estimation of dengue using the R0 
expression for dengue fever 3:

 bc
aeM

a=R p0
              (1)

where Mp is the relative density of (female) mos-
quitoes per person, a is the average daily bite

rate,   is the average duration of the infectious 
period in humans, µ is the mortality rate for fe-
male mosquitoes, τ is the average duration of 
the extrinsic incubation period (in days), b is the 
transmission coefficient from mosquitoes to hu-
mans, and c is the transmission coefficient from 
humans to mosquitoes; (3) discussion of each 
method of uncertainty analysis and its influence 
on the results of simulation studies.

Methodology

Estimation approaches and
their definition of uncertainty

Uncertainty about parameter estimates in any 
modeling exercise can be interpreted in more 
than one way. The interpretation of uncertainty 
that is adopted will have an effect on both the 
methodology and results of an uncertainty anal-
ysis. Here, we will present two common inter-
pretations of uncertainty. In the first view, un-
certainties represent our ignorance about the 
parameters (which are fixed unknown values) 
that compose the model. Therefore their possible 
sources would be: (1) lack of (quality) data from 
which to estimate a given parameter, (2) mea-
surement error in data collection procedures, 
and (3) sample variation. These are important 
sources of uncertainty that must be reckoned 
with. Meanwhile, according to a second view, we 
recognize that parameter uncertainty stems from 
the fact that many parameters are the output of 
a stochastic process that cannot be adequately 
represented by a single number. Therefore, un-
certainty must be viewed as a combination of the 
intrinsic variability of the parameter and the ex-
ternal sources mentioned above. This means that 
even if we could eliminate all measurement error 
and have a random and representative sampling 
process, we would still have uncertainties about 
the parameters. Thus, parameter uncertainty is 
no longer a result of our estimation process but a 
feature of our estimate.

Monte Carlo uncertainty analysis

MCUA starts from the paradigm of the first view 
of uncertainty as presented above, in which the 
input parameters of the model (θ) are constants 
whose true values are unknown. Thus, uncertain-
ty is viewed as the result of our lack of knowledge 
of the true nature of the model parameters. In or-
der to deal with the uncertainties about the most 
likely value of the parameters, intervals are de-
fined for each parameter of interest correspond-
ing to what we consider acceptable ranges of 
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variation. For example, a review of the literature 
shows that Aedes aegypti daily feeding frequency 
varies from 0.5 to 1.2 (see Table 1). The analysis 
then consists of a Monte Carlo procedure. In this 
procedure, a random sample of size n is taken 
from within the intervals attributed to each of the 
parameters being analyzed. The model is then 
calculated n times (each time with a different set 
of parameters values), generating a “sample” of 
output values Φ(R0).

In this type of analysis, not all parameters 
need to have intervals attributed to them. Some 
may be kept constant throughout the analysis. 
Usually, only the parameters to which the mod-
el’s output is more sensitive are included in the 
uncertainty analysis. This pre-selection of pa-
rameters, however, does not reduce the com-
putational cost of the analysis, since this cost is 
associated mainly with the number of times the 
simulation has to be repeated. The reduction of 
the number of parameters included in the analy-
sis may reduce the variability of the sample ob-
tained for the output variables, but at the cost of 
ignoring possibly relevant uncertainty sources.

A full run of the model is done for each set of 
samples obtained. From the model’s output on all 
runs, a joint probability density function (PDF) 
for the model’s outputs(Φ) is approximated and 
their properties can be estimated by marginal-
izing this sample distribution for each parameter. 
The sample sizes for this procedure vary but are 
seldom less than 50,000, which is the number of 
times the model has to be run.

Bayesian uncertainty analysis

The Bayesian approach to uncertainty analysis 
starts with a different perspective on the nature 

of model parameters. The parameters are now 
treated as random variables of which we usually 
have little or no information. Therefore, PDFs 
are attributed to them from our prior knowl-
edge (or lack thereof). The MCUA method also 
used prior distributions for the parameters, but 
they represented our lack of knowledge about 
the true values of the parameters. Now, the pri-
or distribution represents our beliefs about the 
real probability distributions of the parameters. 
The choice of adequate priors is a complex topic 
in Bayesian inference. The best way to convert 
beliefs into probability distributions is a highly 
debated topic 8. In the absence of detailed prior 
information about a parameter, we resort to the 
“principle of insufficient reason” proposed and 
used by Laplace 9 and use a uniform prior distri-
bution covering a certain range of values. Such a 
distribution is also known as a non-informative 
or vague prior distribution. Prior distributions 
[p(θ)], as their name indicates, are defined before 
we look at the data (D). Any data available will be 
used to update our prior distributions, hopefully 
turning them into better approximations of the 
actual distributions of our parameters (posterior 
distributions).

In short, the goal of the Bayesian analysis is to 
update these prior distributions simultaneously, 
with the help of available data in order to yield a 
joint posterior distribution for the input param-
eters [π(θ)] 6. The prior distributions are updated 
using the Bayes formula:

π (θ) ∝ p (θ)L(θ)              (2)
where L(θ) = p(D|θ) is the likelihood of the pa-
rameters 10.

The method described so far will serve as a 
basis for the BM method, which will expand up-
on these concepts.

Table 1

Prior distributions assigned to the model’s components.

 Parameter Prior References

 Mosquito density (Mp) U [0-12] Dietz 13

 Feeding frequency (a) U [0.5-1.2] Luz et al. 1

 Infectious period (1/γ) U [3-5] Luz et al. 1

 Female death rate(µ) U [0.03-0.17] Luz et al. 1

 Extrinsic incubation period (τ) U [6-25] Luz et al. 1

 Mosquito-to-human transmission probability (b) U [0.4-0.9] Luz et al. 1

 Human-to-mosquito transmission probability(c) U [0.4-0.9] Luz et al. 1

 Basic reproduction number (R0) U [0.9-2.5] Massad et al. 12; Marques et al. 14

U: uniform.
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Bayesian melding

One important way in which the BM procedure 
differs from classical Bayesian inference is by 
calling for the definition of prior distributions 
for both the model’s inputs and outputs. These 
priors are (as usual) based on available expert 
knowledge about their values. We denote the 
joint prior distribution of inputs by p(θ).

The joint prior distribution for the model’s 
output is denoted by p(Φ). Another feature of BM 
is that it recognizes that there is another (implic-
it) prior distribution for Φ that is induced by p(θ) 
when applied to the model (M), which is then de-
noted by p[M(θ)]. These two priors on the output 
need to be pooled together by means of logarith-
mic pooling in order to avoid the Borel paradox 7. 
The pooling is necessary since each prior fre-
quently derives from different sources of infor-
mation and may be incoherent. Thus, produc-
ing coherence between the two priors amounts 
to reaching consensus between the two sources 
of information. It must be noted, however, that 
pooling can only deal with minor forms of inco-
herence, which amounts to saying that if both 
priors do not substantially overlap, the model or 
data adequacy must be questioned 7. The pool-
ing is weighted by a constant that is set according 
to the relative weight we wish to assign to each 
prior during the pooling. For example, a 0.5 gives 
equal weights to both priors. From this point on, 
standard Bayesian inference may follow.

If data are available on any of the inputs or 
outputs, they can be used to form likelihoods for 
θ and Φ, which are denoted by Linp(θ) and Lout(Φ). 
This way, any data available can be included in 
the inference process. However, the BM proce-
dure can update p(θ) even in the absence of data, 
since the presence of a pooled prior distribution 
for Φ will provide a constraint from which we can 
filter out unacceptable combinations of param-
eters. Thus, BM does not require the existence 
of likelihoods to be useful as a calibration tool, 
even though in this case it would not be doing 
Bayesian inference. Nevertheless, the procedure 
would narrow the range of the parameter distri-
butions, which is expected of a calibration pro-
cedure.

The inference procedure works like stan-
dard Bayesian inference. The marginal posterior 
distribution of the inputs, p[θ](θ) is given by the 
Bayesian theorem:

π[θ](θ)= p(θ)Linp (θ)Lout (M(θ))              (3)
The posterior distribution of θ, π[θ](Φ), cannot 

be obtained analytically and extracting a sample 
from it can be difficult or impossible. To circum-
vent this problem we obtain an approximate 
sample from π[θ](θ) using the sampling impor-

tance re-sampling (SIR) algorithm as proposed 
in Rubin 11.

Inference about Φ, or any function of it, can 
be made from its marginal posterior distribution, 
the distribution of Φ = M(θ) when θ~π[θ](θ).

The SIR algorithm

Implementation of the BM method centers on 
the SIR algorithm, which is used to determine 
the posterior distributions for all the model’s 
components. A succinct description of the steps 
involved in the algorithm follows: (1) draw a 
k-sized sample from each of the parameter’s pri-
or distribution. This sampling will generate a set 
of k vectors (θ1,..., θk) with each vector containing 
as many elements as there are1 input parameters 
in the model; (2) for each θi, we run the model 
obtaining the corresponding Φi = M(θi); the re-
sulting distribution is p[M(θi)]; (3) obtain a kernel 
density estimate of Φ; (4) form the importance 
sampling weights:

And (5) re-sample l values with replacement 
from each of the parameter’s priors with values θi 
and probabilities proportional to wi.

The result of step 5 is an approximate sample 
from the posterior distributions of the input pa-
rameters.

The α on step 4 is a weight factor for the pool-
ing of the two output prior distributions; α was 
set to 0.5.

Discussion

To discuss the pros and cons of the uncertainty 
analysis methods presented, we simulated an ep-
idemic scenario for dengue based on the model 
of equation. Although the model on which this 
discussion is based is quite simple, the choice 
was made for didactic reasons. The methodology 
applies equally to more complicated models be-
ing extensible without modification to stochastic 
models 7.

The model was analyzed by both the MCUA 
and BM analysis. For both analyses the priors 
used for the parameters were the same (Table 1).

Priors and likelihoods

The components of equation were assigned prior 
distributions (see Table 1) based on data from the 
literature 1,12,13,14. We assigned uniform priors to 
all input and output parameters. These types 
of priors can also be referred to as vague priors 
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since they assign the same probability for every 
value within the range chosen for the parameter. 
The ranges chosen for the prior distributions 
were chosen so as to include the “real” parameter 
values (derived from the literature 1). The same 
priors were used for the MCUA and BM analysis. 
If less vague priors were to be used, such as a nor-
mal distribution, for instance, the performance 
of both methods would be enhanced. However, 
the information necessary to better define those 
distributions is frequently not available. Thus, it 
is important that the method be able to perform 
well even when all priors are wide and vague.

Even though it would be possible (in the BM) 
to construct likelihoods for every parameter for 
which there are data, we chose to include a likeli-
hood only for R0. By using a minimal amount of 
data, we emphasize the method’s power.

Calibration testing

In order to evaluate the ability of BM to use avail-
able data to calibrate (reduce the uncertainty) in 
the model components, a value for R0 was calcu-
lated from a set of arbitrarily chosen values for 
the model parameters (Table 2). The BM was run 
with vague priors (Table 1) for the model input 
parameters, which included the values from Ta-
ble 2 in their support. A small set of R0 values was 
sampled from a normal distribution with mean 
equal to the value for R0 calculated from the val-
ues of Table 2 and standard deviation equal to 
0.2 (chosen to be similar to the values reported 
by Massad et al. 3). This set of R0 values was used 
as data.

The prior distributions for θ were not cen-
tered on the parameter values (Table 2). We made 
this choice in order to demonstrate the method’s 
ability to explore the whole surface of the joint 
prior distribution, i.e., its robustness to bias in 
the priors.

Monte Carlo uncertainty analysis

The MCUA method returns ranges for Φ only. 
Actually, it returns a sample from a supposed 
distribution of Φ (Figure 1). From this sample, 
confidence intervals for an expected value can 
be calculated.

The statistical analysis of the generated dis-
tribution of R0 tells us only that we should not 
underestimate the role of uncertainty about in-
put parameters. The distribution is quite wide, 
indicating that the extra information represented 
by the prior distributions of the model’s param-
eters lead to an arguably more realistic although 
not very precise estimate of R0. These undesir-
able aspects of the technique’s output derive 

from the fact that no constraints are applied to 
which combinations of parameter values are ac-
ceptable, and that we purposefully in this case 
used very wide prior distributions for θ, meaning 
that we do not know a great deal about them.

Bayesian melding

The simulations were run with simulated data 
as described above. The dataset (n = 12) was 
sampled from a normal distribution with a mean 
given by the calculation of R0 from the parameter 
values chosen (Table 2) and standard deviation 
equal to 0.2.

Table 2 shows the median and standard de-
viations of the posterior distributions of all the 
parameters. Figure 2 shows the priors (both spec-
ified and pooled) and posterior distributions of 
R0 as calculated by BM, as well as the likelihood 
function for R0.

It should be noted that even with a small data-
set, the posterior distribution of R0 is strongly in-
fluenced by the likelihood function derived from 
the data. If we do not include data on the model’s 
output, the BM yields a posterior distribution 
that is virtually identical to its prior (Figure 3). 
The lack of data does not affect the posteriors of 
the model’s input parameters so drastically, as 
shown on Table 2.

Conclusion

The incorporation of intrinsic uncertainties as-
sociated with model parameters can lead to con-
siderable difficulty in the model’s interpretation, 
especially if little information is available to re-
strict the boundaries of the prior distributions 
attributed to parameters. The results from MCUA 
show that with vague priors for τ the range for the 
model’s output can become quite large. More-
over, MCUA does not provide us with any means 
to validate/update our priors based on available 
data.

The BM procedure on the other hand offers a 
more complete treatment of the problem, allow-
ing us to incorporate all sources of uncertainty 
and available information. BM even goes beyond 
Bayesian uncertainty analysis by assigning not 
one but two prior distributions to the model’s 
output: one from prior knowledge and another 
induced by the model (representing the infor-
mation contained in the model structure). The 
pooling of these two priors allows us to weigh 
prior knowledge against expert opinion (model 
structure). BM also showed a remarkable abil-
ity to zero in on the “real” parameter values even 
when given biased uniform priors and little data. 
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Table 2

“Real” parameter values chosen for the model’s components, and estimates generated by Bayesian melding (BM).

 Parameter Value Estimate with data Estimate without data

   (median ± SD) (median ± SD)

 Mosquito density (Mp) 0.38 0.45 ± 0.01 0.32 ± 0.09

 Feeding frequency (a) 0.52 0.52 ± 0.0005 0.52 ± 0.005

 Infectious period (1/γ) 5 (γ = 0.2) 0.2 ± 0.003(g) 0.2 ± 0.001

 Female death rate (µ) 0.03 0.03 ± 0.0001 0.03 ± 0.001

 Extrinsic incubation period (τ) 6.7 6.72 ± 0.02 6.5 ± 0.14

 Mosquito-to-human transmission probability (b) 0.41 0.41 ± 0.0004 0.45 ± 0.004

 Human-to-mosquito transmission probability(c) 0.41 0.41 ± 0.0004 0.41 ± 0.004

 Basic reproduction number (R0) 2.36 2.36 ± 0.05 1.71 ± 0.46

Figure 1

Sample distribution for R0, as generated by Monte Carlo uncertainty analysis (MCUA).

The availability of larger datasets (to construct 
the likelihoods) would cause the posterior dis-
tribution to more closely approximate the shape 
of the likelihood function instead of that of the 
prior distribution. It is important to notice how-
ever that BM may not converge on the “real” pa-
rameter values if there is a lack of identifiability in 
the model, that is, if there is more than one set of 
parameter values that can yield the same output. 

Another possible culprit for convergence failure 
is the SIR algorithm, which may not converge if 
the joint posterior surface is very complex. BM 
failed to converge on two parameters in our ex-
ample model (Mp and τ), although it came very 
close to the correct region of the parameter space 
(see Table 2). Another important requirement for 
the BM method to work is that the support for 
priors and likelihoods overlaps. The reason for 
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Figure 2

Prior, pooled prior, and posterior distributions for R0 as well as the likelihood function generated for R0 from the simulated 

dataset (N(2.3, 0.2), n = 12). Posterior distribution obtained by the Bayesian melding (BM) method.

Figure 3

Prior, pooled prior, and posterior distributions for R0. Posterior distribution obtained by the Bayesian melding (BM) method 

without data on R0.
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this is very intuitive, since we cannot update be-
liefs if the data do not refer to them.

Even when BM is used without data, its re-
sults are better than those of MCUA, because the 
existence of a prior distribution in the model out-
put allows us to filter out results that are outside 
the acceptable range for the phenomenon being 
modeled (Table 2).

We conclude that the BM method is the one 
that takes best advantage of the explanatory po-
tential of mechanistic models, while maintain-

ing model realism by taking into account the 
stochastic nature of all the model’s elements. 
Moreover, the BM method updates our knowl-
edge about both the inputs and the output of the 
model, serving simultaneously as a calibration 
and uncertainty analysis tool.

The BM method can be extended beyond 
what was presented here to test hypotheses 
about the model structure. Alternative models 
can be compared using Bayesian factors 7 which 
can be easily derived from the SIR algorithm.

Resumo

Em processos epidêmicos reais, o número básico de 
reprodução R0, é o resultado conjunto de múltiplos 
eventos probabilísticos. Entretanto, é modelado fre-
qüentemente como função determinística de variá-
veis epidemiológicas. O artigo discute a importância 
do tratamento adequado das incertezas nesse tipo de 
modelo, por meio da comparação de dois métodos de 
análise de incerteza: análise de incerteza Monte Car-
lo (MCUA) e o método de Bayesian melding (BM). Os 
dois métodos são aplicados a um modelo para deter-
minar o R0 do dengue com base em parâmetros ento-
mológicos. O BM produziu um tratamento completo 
das incertezas associadas com parâmetros do modelo. 
Ao contrário da MCUA, a incorporação de incertezas 
levou a distribuições posteriores realistas para os pa-
râmetros e variáveis. A incorporação pelo BM de toda 
a informação disponível, desde dados observacionais 
até opiniões de especialistas, permite o uso construtivo 
de incertezas, gerando distribuições posteriores infor-
mativas para todos os componentes do modelo que são 
coerentes enquanto conjunto.

Teorema de Bayes; Dengue; Modelos Epidemiológicos; 
Incerteza
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