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Editors,
The recent paper on Using Google Trends (GT) to Es-
timate the Incidence of Influenza-Like Illness in Ar-
gentina 1 is very interesting. Orellano et al. studied 
Google Flu Trends (GFT) and GT with a conclusion 
regarding “the utility of GT to complement influenza 
surveillance”. Indeed, the usefulness of GFT and GT 
has been mentioned in some earlier reports 2,3. How-
ever, as a computational model, there are several 
things to be considered in the simulation 4. Under- or 
over-estimation can be expected and this is still the 
present problem in using the Google system for pre-
dicting influenza 4. There is a need for modifications 
of GT and GFT into a more specific tool that is appro-
priate for each context. A good example of this is the 
development of FluBreaks by Pervaiz et al. 5.
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Expanding the discussion

We appreciate the valuable comments made by Pro-
fessor Viroj Wiwanitkit about our work and the op-
portunity to further discuss the Google Flu Trends 
model (GFT) as well as the methods based on Google 
Trends (GT) for the estimation of influenza incidence.

The GFT is a model that was developed in 2008 by 
Google to estimate influenza incidence based on In-
ternet search terms related to the disease. In several 
countries it has been found to be a good model of per-
formance 1,2,3,4, but problems have arisen when inci-
dence peaks occur 5,6. In the United States, for exam-
ple, the original model failed to predict the first peak 
of the H1N1 pandemic in 2009, and on the other hand 
overestimated the impact of the 2012/2013 epidemic 5. 
Since its original development, there have been nu-
merous changes and updates both in equations and 
search terms 7. The reasons for these changes were the 
differences in timing and intensity between the model 
results and the actual observations. One possible hy-
pothesis is that these differences may be due to wide-
spread media coverage triggering many flu-related 
searches by people who were not ill; in any case, there 
is a clear need to update the current algorithms 8.

To overcome the problems with the incidence es-
timates, the study by Pervais et al. 9 analyzes the use 
of different probability distributions such as Poisson 
or negative binomial, instead of the normal distribu-
tion used in the original algorithms. The other ap-
proach to the problem is the inclusion of epidemio-
logical surveillance data, developing some form of 
continuous parameterization of models 10,11.

In countries that do not have GFT estimates, 
the development of local models based on the GT is 
possible. In these cases, a model that relates the fre-
quency of Internet search terms and the influenza 
incidence can be developed locally. After these mod-
els are parameterized, estimates can be performed 
analogously to the GFT. Significant correlations were 



Cad. Saúde Pública, Rio de Janeiro, 31(6):1333-1335, jun, 2015

1335CARTAS   LETTERS

observed between the terms of GT and influenza in-
cidence 12,13. Additionally, the development of local 
models would enable the inclusion of local variations, 
and the extension of these methods to other diseases.

Besides models based on Google data alone other 
methods using big data have been developed. For 
example, models based on Wikipedia searches have 
proven to be less sensitive to the increased media 
reports than models based on web search engines 14. 
On the other hand, there are models based on data 
obtained from Twitter, which have shown good pre-
dictive performance 15.

To our knowledge, this is the first published study 
conducted in Latin America on influenza incidence 
estimations based on big data analysis models. Both 
the model based on the GT and the GFT have shown 
high correlations between the estimated influenza 
incidence and the epidemiological surveillance da-
ta, however regarding the intensity, overestimation 
was observed with the GFT. In this sense, it should 
be noted that in Argentina only 6% of private health 
providers report data to the epidemiological surveil-
lance system 16. We cannot say for certain whether 
the GFT is actually overestimating the incidence or 
seeing cases not detected by the epidemiological sur-
veillance system. What we can say for now is that the 
dynamics and intensity of the influenza incidence 
can be adequately modelled using the GT data and 
the incidence from previous years. The performance 
of these models is being analyzed for routine use in 
the epidemiological surveillance system of Argentina 
as a complement to traditional surveillance activities.
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