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Abstract

There is growing interest among urban health 
researchers in addressing complex problems us-
ing conceptual and computation models from 
the field of complex systems. Agent-based mod-
eling (ABM) is one computational modeling 
tool that has received a lot of interest. However, 
many researchers remain unfamiliar with devel-
oping and carrying out an ABM, hindering the 
understanding and application of it. This paper 
first presents a brief introductory guide to carry-
ing out a simple agent-based model. Then, the 
method is illustrated by discussing a previously 
developed agent-based model, which explored 
inequalities in diet in the context of urban resi-
dential segregation.

Computer Simulation; Epidemiologic Methods; 
Systems Theory; Urban Health

Resumo

Há um interesse crescente entre os pesquisado-
res de saúde urbana em trabalhar com proble-
mas complexos utilizando modelos conceituais 
e computacionais do campo de sistemas comple-
xos. A modelagem baseada em agentes (MBA) é 
uma ferramenta computacional de modelagem 
que tem recebido crescente interesse. No entanto, 
vários pesquisadores ainda não se sentem fami-
liarizados com o desenvolvimento e a execução 
de uma MBA, dificultando a sua aplicação e 
compreensão. Este artigo primeiramente apre-
senta um breve guia introdutório para executar 
um simples modelo baseado em agentes. Em se-
guida, o método é ilustrado discutindo um mo-
delo baseado em agente previamente desenvol-
vido, que explora as desigualdades na dieta no 
contexto da segregação residencial urbana.

Simulação por Computador; Métodos 
Epidemiológicos; Teoria de Sistemas; Saúde 
Urbana
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Introduction

Among urban health researchers, there is grow-
ing interest in conceptualizing complex prob-
lems using a system framework 1 and in using 
systems modeling tools to explore how compo-
nents of a complex problem interact, are sus-
tained or changed, and ultimately identify areas 
for intervention 2,3. In particular, system simula-
tion approaches are useful tools for understand-
ing processes and structures involved in complex 
problems, identifying high-leverage points in the 
system and evaluating hypothetical interven-
tions 1 – an exercise that would be impossible to 
do by collecting and analyzing real-world data.

One tool that has been increasingly used 
to examine urban health issues is agent-based 
modeling (ABM) 4,5. Agents are given traits and 
initial behavior rules that organize their actions 
and interactions. Stochasticity can be included 
in the assignment of agent characteristics and 
in determining which agents interact and how 
agents obtain information and make decisions. 
The model is run over time and repeated numer-
ous times, to obtain a distribution of possible 
outcomes for the specified system. The micro-
entities, referred to as “agents”, are anything that 
alters its behavior in response to input from other 
agents and the environment 6.

ABM is able to accommodate high hetero-
geneity in agent characteristics and interactions 
between agents and environments, as well as 
features like dynamics, feedbacks and adapta-
tion, which are impossible to represent in tra-
ditional statistical models 7,8. Agents can be de-
fined at multiple levels, including individuals or 
group of individuals (e.g., families, institutions, 
policy-making bodies etc.). Research questions 
that require significant heterogeneity within 
and between agents and diverse spatial and re-
lational elements are well-suited to ABM 9. In 
urban health research, simulations can be used 
to explore dynamic scenarios involving diverse 
entities and settings such as the built and social 
environment, city agencies, legislative bodies, 
health services, individual residents and fami-
lies. Some agent-based models include detailed 
data and strive for high realism 4 while others are 
abstract 5,10.

Despite the ABM suitability to research com-
plex problems in urban health, it is a new tool 
to many researchers. One important barrier to 
foster ABM adoption among researchers is their 
unfamiliarity with steps needed to carry out the 
modeling. Therefore, the purpose of this paper is 
to provide a very brief introductory guide to car-
rying out a simple agent-based model. We then 
use a previously constructed model 11 to illustrate 

the steps one can take when building a simple 
model. This is only a brief guide; before starting 
a computational model, it is recommended that 
readers refer to comprehensive guides 9,12,13,14.

Modeling guide

Conceptual model

As in all research endeavors, first the investigator 
must define the question(s) of interest. To out-
line the question(s), researchers rely on mental 
models encompassing components and mecha-
nisms relevant to the topic of interest. The prob-
lem is that these models usually remain implicit, 
along with their assumptions, internal consis-
tency and logical consequences 15. Therefore, to 
define the research question(s), the initial step 
is to construct an explicit conceptual model. At 
the first stage, this should be a broad conceptual 
model characterizing the general problem and 
some specific features related to it. Then, one 
can identify where the significant gaps in knowl-
edge are, and a relatively simple aspect of the 
problem to explore in depth. In the second stage, 
the researcher articulates a more specific, nar-
rower conceptual model around this relatively 
simple aspect. At this stage, one works to identify 
the key elements that may be most important to 
the question(s) and think about dynamic pro-
cesses and feedbacks that may play an impor-
tant role.

There are three important points to highlight 
about constructing conceptual models. First, 
conceptual models can be based on either theory 
or empirical data, or both. The researcher may 
construct a new theoretical model, or explore 
and extend someone else’s model. Second, the 
conceptual model is a prerequisite for compu-
tational models, but by itself has high value and 
can be a product for those unwilling to undertake 
computational modeling. Third, a common mis-
take among researchers starting in ABM is to try 
to write a computational model that addresses 
many elements within the broad conceptual 
model identified before. It is important to keep 
in mind that all models are analogies of real sys-
tems, and so they will fail to represent reality 16. 
Good models balance simplicity and adequate 
representation, incorporating enough key ele-
ments and processes and ignoring those that are 
not directly relevant.

After defining the specific research 
question(s), we need to choose the most suit-
able tool to carry out the work. Not all questions 
posed within a system framework need to be an-
swered using a systems science tool; they may 



BRIEF INTRODUCTORY GUIDE FOR AGENT-BASED MODELING S67

Cad. Saúde Pública, Rio de Janeiro, 31 Sup:S65-S78, 2015

be better answered with statistical methods or 
qualitative approaches. Moreover, ABM is not 
the only tool for modeling dynamic, complex 
systems. Other systems science tools, such as 
systems dynamics, may be preferable and more 
appropriate 9,17.

Computational model

•	 Model objective, plan for experiments, 	
	 and outcome assessment

Modeling is an iterative process of using a con-
ceptual model to plan and execute the compu-
tational model, and then potentially rethinking 
the conceptual model. The iterative process of 
modeling is often where the most valuable in-
sight occurs, rather than in the “final results”. 
Even though modeling is an iterative process, in-
vestigators still need to begin with a clear model 
objective. From there, investigators must plan 
the simulation study, including a preliminary 
plan for setting up and testing experimental con-
ditions, and how the outcome will be assessed. 
This is also the time to plan what types of entities 
will fill the system and the temporal and spatial 
extent of the model.

•	 Agents and characteristics

Agents and their characteristics should be specif-
ic to the needs of the research question(s). Select 
few agents and the minimum characteristics re-
quired to address the question(s). Agents do not 
need to appear to be “real”. For example, agents 
representing humans do not require specification 
of age, sex, race etc. unless those characteristics 
are involved in processes or decisions that will be 
modeled. In a simulation framework, there is a 
limitless range of options, thus researchers need 
to curb the enthusiasm for modeling numerous 
types of actors and characteristics. Adding a lot of 
detail does not necessarily result in better insight 
and can make very difficult to execute, test, and 
interpret the model.

•	 The world

The simulated “world” does not need to repre-
sent the real world; instead, it must represent the 
simulation space that is most appropriate to the 
specific question(s) being asked. If mapping to 
a local “real” geography is important, most pro-
gramming environments allow users to import 
Geographic Information System (GIS) layers as 
inputs to replicate an actual urban space or con-
figure a generic abstract space.

•	 Defining agent objectives

The researcher must define the main objectives 
of the agents, thinking through the processes 
that are essential to answering the research 
question(s) and choose to ignore the rest.

•	 Defining agent behavior rules –  
	 utility functions

Agents may be required to take action and/
or make decisions in response to single stimuli 
or weigh multiple criteria. Utility functions are 
aides for decision making when factoring in mul-
tiple criteria and allowing each agent to rank op-
tions and make a choice. Theory and empirical 
research can be incorporated in decision-mak-
ing rules, drawing in particular from the fields of 
economics, cognitive science, neuroscience and 
computation science 18,19. Typically, there is a gap 
in the data/theory that inform decision making 
in the specific contexts we want to model. Thus, 
researchers may not have strong conceptual jus-
tification for a particular utility function and in-
stead choose one that has been widely used and 
that provides reasonable results. Deciding on the 
specification of the utility function can be diffi-
cult and ultimately one will need to test sensitiv-
ity to the functional forms and inputs.

•	 Defining agent behavior rules –  
	 randomness

In ABM, randomness can be included in the con-
struction of each dimension. Researchers usually 
add randomness to the utility function itself, in 
order to represent uncertainty they have about 
a particular equation and the parameters within 
it, as well as to represent bounded rationality 18. 
Bounded rationality refers to the fact that deci-
sion making is not a perfectly rationale proce-
dure. Decisions are made with incomplete infor-
mation or even for reasons unknown to the actor 
making the decision.

•	 Setting schedules

The model is run over time steps. Model activity 
can be mapped to a timeframe in the real world; 
however, real timeframes are not required and 
may make little sense in an abstract model. For 
some models, there may be activities that occur 
in fixed time intervals or triggered when particu-
lar situations transpire.
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•	 Dynamics and feedbacks

A key advantage of complex systems simulations 
– including ABM – is the ability to incorporate dy-
namics and feedbacks within the model, which 
may be important to the process being studied. 
Researchers should be deliberate about incor-
porating dynamics and feedbacks. Dynamics al-
low changes over time to agent characteristics 
or decision rules, in ways that could affect the 
process under study. For example, some ques-
tions involve lifecycle processes, where deaths 
and births are important to include in the model 
for equilibrium or to explore how much informa-
tion, traits, and risks are passed from one genera-
tion to another. Feedbacks can be represented as 
responses to structural features (the structure of 
the world/environment, which could be exog-
enously imposed) and/or behavioral conditions 
(how behaviors are altered by other behaviors, 
often an endogenous process) 20. Feedbacks are 
typically most interesting when represented in 
both structural and behavioral processes, as they 
can generate changes/new behaviors at both the 
agent level and the system at large 12,20. Imple-
menting many dynamics and feedbacks into 
the early model stage will make it impossible to 
interpret and verify the system 9, so it is recom-
mended to start small and expand.

•	 Results – stochasticity

In ABM, stochasticity is part of many steps (ini-
tialization, behavior rules etc.), thus, it is impor-
tant to run the model multiple times to obtain 
the distribution of outcomes and then summa-
rize results across multiple runs. Note that, in 
ABM, this is not assessing how well the model fits 
the intended system or observed world; it is only 
assessing the impact of stochasticity embedded 
in the model 14. Tools can be used to determine 
the number of runs necessary to generate a rep-
resentative result (for example, the Simulation 
Parameter Analysis R Toolkit Application pack-
age developed for R 21). Absent tools, it is reason-
able to try 10 or 30 runs on a particular scenario 
and evaluate the magnitude of the uncertainty 
across runs.

•	 Results – displays and interpretation

ABM outputs are different from those generated 
from statistical analysis. The main outputs are 
the evolution of the system and its components 
(process outputs) and a summary of the “final” 
state (summary outputs). Process outputs are 
displayed in graphics or tables representing the 
system’s variables at each time step (or lightly 

summarized over multiple time steps), as well 
as visual representations of the system in action. 
Process data are especially useful for exploring 
and interpreting the system’s behavior, structure 
and emergence. Because any one-time step is 
representative of the system, in order to obtain 
a summary of the “final” state of the model, re-
searchers can summarize the data of a represen-
tative/relevant interval at the end of the model 
run (e.g., averaging the outcome for the final 20% 
of the run). Due to the uncertainty of data inputs 
and modeling process, agent-based models are 
not prediction models and outputs should not be 
interpreted as precise estimates. Interpret results 
qualitatively rather than quantitatively. Look for 
strong patterns and large differences between 
summary outcomes across experiments; small 
differences are usually not worth noting.

•	 Verification, calibration, external  
	 validation

During the modeling process, some procedures 
must be done to achieve the most useful and reli-
able model possible. Given that ABM can reveal 
counterintuitive processes, evaluating and test-
ing models can be difficult. Unexpected results 
that appear interesting may be due to errors in 
computer programming or high dependence on 
initial choices or small variations in stochastic 
processes involved with strong positive or nega-
tive feedbacks. For this reason, researchers need 
to work to internally validate (verification and 
calibration) and externally validate the model:
(a) Verification. Verification is the process of 
checking that the computer code correctly im-
plements the model formulation, i.e., if it does 
what it was planned to do 14,22. There are diverse 
strategies to verify from one or few lines of code 
to the whole program and it is recommended to 
use them continuously during coding, making 
easier finding and fixing mistakes. Many of the 
processes are standard practice for quality con-
trol when writing computer code and some are 
specific to ABM 12,22.
(b) Calibration. Calibration is the process of 
tuning model parameters to align with basic 
patterns observed in the real system being mod-
eled 14,23. Calibration can aim for a qualitative 
match or a close, quantitative match. Qualitative 
matches align the parameters with literature on 
the topic. This method is typically used when no 
calibration data exist or the model is abstract. 
Close match calibration is often chosen when 
particular parameters are very important and 
strongly affect the model results, the parameters 
are thought to have reasonably independent ef-
fects on the model, and good alignment data ex-
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ist 14. In this case, the researcher needs to identify 
relevant empirical data, define a plausible range 
of parameter values and set criteria for evaluat-
ing how good the match is.
(c) External validation. A simulation model is on-
ly an approximation of the target system, thus the 
work of external validation builds a case for the 
model’s truthfulness and usefulness under cer-
tain conditions 16,24. The external validation step 
can include evaluating the validity of the theo-
ries being used and how well the model incorpo-
rates them 24,25, examining the appropriateness 
of underlying assumptions and the suitability of 
the model to the purpose. Model outputs can be 
compared to either empirical data (coming from 
sources other than those used during calibration) 
or aligning the model with patterns observed in 
the real world and checking if the model captures 
the most important systems features 14,26.

•	 Programming environment

ABM can be done in any language, but object-
oriented programming languages are preferred 
(Python, C++, Java etc.). Commonly used inter-
faces/libraries are RePast (http://repast.source 
forge.net), NetLogo (http://ccl.northwestern.
edu/netlogo), and AnyLogic (http://www.any 
logic.com). A detailed and commented list of 
programming environments is presented by 
Kravari & Bassiliades 27.

•	 Protocols for designing, executing, and 	
	 communicating the model

Some protocols and standards were developed 
in order to increase transparency of ABM, reduce 
criticism that models are irreproducible, and 
provide a language that the scientific commu-
nity can use to evaluate model validity. The most 
frequently used protocol is the ODD 28,29 (and 
ODD+D 30), which includes elements to make 
explicit the Overview, Design concepts and De-
tails of the model. The example below does not 
explicitly follow this protocol, but we included a 
number of its components.

Illustration of an agent-based model 
from urban health research

Conceptual model

An income differential in diet quality has been 
observed in numerous studies illustrating that 
lower income is generally associated with worse 
dietary profiles 31,32. Thus, diet quality has been 
identified as a key factor in socio-economic in-

equalities in obesity and diet-related illnesses. 
There are three prevalent theories of dietary 
inequality and the variety of explanations high-
lights that inequalities likely occur within a com-
plex system of interrelated processes that are not 
well understood:
(a) Spatial inequality and access resulting from 
residential segregation by income and race/
ethnicity. Within many urban areas in the U.S., 
minority and low-income neighborhoods have 
significantly fewer venues for purchasing healthy 
foods as compared with high-income neighbor-
hoods 33,34.
(b) Individual or group preferences that are pat-
terned by income. High-income households pre-
fer healthy foods so choose to live in areas with 
healthy food stores, while low-income house-
holds prefer unhealthy foods and choose to live 
in areas without them 35.
(c) Monetary constraints. Healthier fresh fruits 
and vegetables cost more than packaged foods. 
Low-income households do not have the means 
to purchase healthier foods whereas higher in-
come households do 36.

Model objective and plan for experiments

We used ABM to explore the role that urban seg-
regation can play in shaping dietary behaviors 
and to suggest policy levers that may be used 
to counter its effects. The model allowed us to 
focus on how location and household incomes 
and preferences interact over time to influence 
store availability and supply of healthy foods and 
hence have the capacity to affect income differ-
ences in healthy eating. See Figure 1 for a con-
ceptual sketch of core features included in the 

Figure 1

Conceptual sketch of core features to include in the model. The sketch illustrates structural 

feedback between households and stores and behavioral feedback within households and 

stores (arrows around them). Households choice depends on their income, proximity to stores 

and food preferences. On the other hand, stores influence households’ diet habit.
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model. We imposed several extreme scenarios 
for economic residential segregation and spatial 
clustering of healthy food stores (for details, see 
Table 1 at Auchincloss et al. 11). Then, we identi-
fied which particular scenario showed income 
differentials in diet that have been observed in 
previous empirical studies in the U.S., where 
higher incomes generally have better diet than 
low incomes 31,32. Then we used the selected sce-
nario to run experiments that explored whether 

pricing and preference factors were capable of 
reducing income differentials in diet generated 
by segregation.

Agents and characteristics

Only two types of agents were included: house-
holds and food stores 11.
(a) Household agents were differentiated by 
where they live, income and food preferences. 

Table 1

Functions for weighting and scoring the inputs for utility.

Dimension Justification and description for scoring Weight * High-income Low-income

Price ** Price score. In our model, both low and high-income households preferred a 

cheap store – thus all households scored a cheap store as 1. To account for the 

fact that rich households were comparatively insensitive to price, rich households 

in our model scored an expensive store as 0.8 (i.e., close to 1), while poor 

households scored it 0.1 (i.e., close to 0)

0.2

Prices at the food store are cheap 1.0 1.0

Price at the food store are expensive 0.8 0.1

Distance ** Both low- and high-income households preferred a cheap store, thus, all 

households scored a cheap store as 1. Both high- and low-income households 

equally preferred a closer store but, because travel was more of an obstacle for 

low-income households, poor households gave a distant store a lower score 

than a high-income household. The distance score was 1 – (number of grid cells 

between residence and store) / 30 for low-income households, and 1 – (number 

of grid cells between residence and store) / 130 for rich households

0.5

Distance between household and store = 0 1.0 1.0

Distance between household and store > 0 1 - d / 130 1 - d / 30

Habit Households remembered the store(s) they visited during the past five time steps. 

They gave a score of 1 (highest) to the store they last shopped at and decreased 

the score by 1/5 for each model step since they last visited that store

0.1

Same store that household shopped at on 

previous time step

1.0 1.0

Different store (steps since = number of time 

steps since the household last shopped at store)

1 - steps / 5 1 - since / 5

Food preference Preference scores in the utility just reflected the household’s preference: 

households scored a healthy store with their own household preference; an 

unhealthy store got a score of 1 – household preference. Household food 

preference was a continuous attribute 0 to (preference for unhealthy food = 

0, preference for healthy food = 1). Preference was either randomly assigned 

or assigned by household income in our “preference experiments” (unhealthy 

preference was assigned the lower end of the preference range [0.0-0.6] and 

healthy preference the upper end of the range [0.4-1.0] with some overlap 

between possible preferences)

0.2

Store sells healthy food Preference Preference

Store sells unhealthy food 1 - Preference 1 - Preference

* Weighting parameters were used in the main results reported in the Auchincloss et al. 11. Sensitivity was tested to alternative weights; 

** Scores for distance and price were iteratively selected using the “random scenario” and assuming that high-income households should spend more on food 

and travel at least as far or farther than low-income households.
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These characteristics were most relevant to food 
shopping behaviors we wanted to explore. In-
come was a proxy for other elements of socio-
economic status and it was an important trait in 
this model due to our interest in economic segre-
gation. We randomly classified households into 
either low or high income, with 50% of house-
holds assigned to the low-income category. We 
ignored the middle-income category in order to 
keep the model simple and improve interpreta-
tion. Food preferences was a proxy for a range 
of personal attitudes and psychological factors – 
and to some extent cultural contexts – that could 
influence decisions around diet.
(b) Stores were assigned a location, a type of food 
(unhealthy or healthy; at initialization 50% of 
stores sell healthy foods) and average price for 
food (either inexpensive or expensive; 50% of 
stores sell inexpensive foods).

The world

Our question was abstract and not grounded 
in a specific city, thus the world did not require 
GIS layers or data that grounded it to a particu-
lar context. However, we needed to measure dis-
tance/proximity between agent locations and 
allow for clustering, thus, our model required a 
world with a measureable grid space. We chose a 
small grid space (50x50 grid) and each cell in the 
grid contained one household, thus 2,500 house-
holds in the world. At baseline, stores filled 2% of 
the grid cells, thus 50 stores (each store shared 
its cell with a household). In our model, stores 
made decisions after counting the number of 
customers. Thus, we needed a sufficient number 
of households to generate customers shopping at 
stores and the size of the world needed to be large 
enough to not skew results due to small samples/
distances. We specified the space as toroidal, 
meaning that the world is a continuous space 
projection, so that boundaries would not pres-
ent problems when agents calculated distances 
between themselves and the stores 37.

Agent behavior objectives

Households’ objective is to select a store and 
shop for food, measured by which food store is 
selected. Stores’ objective is to attract customers, 
measured by number of customers per period 
who selected the store.

Household behavior

At each time step, each household selected a 
store to shop. A time step was roughly conceived 
to represent about every 2-3 days as that fre-

quency corresponded to food shopping frequen-
cy in empiric studies 38. However, the duration 
of the model did not literally translate to human 
months or years. In our model, the frequency of 
shopping did not change across households and 
time, because that was not central to our research 
question.

Household utility score

We needed households to choose which store to 
shop at by ranking the stores on dimensions via 
a utility function, described in the Equation 1. 
The dimensions selected for this model are not 
universal; rather, they were selected due to their 
relevance for the question we posed. The four di-
mensions for ranking stores were price of food 
at the store, distance to the store, the stores that 
household shopped at previously (household’s 
habitual shopping behavior) and the house-
hold’s preference for healthy foods. Justification 
for each of these dimensions is included in the 
supplementary data for the original paper 11. We 
selected a utility function that was able to bal-
ance each dimension, such that a low score in 
one dimension would not affect scores in other 
dimensions. We ended up using an additive form 
of the Cobb-Douglas function 39 that utilized 
both scores and weights. We did not use the mul-
tiplicative form because a low score in one di-
mension would make it difficult for a household 
to choose that store, even if the other scores were 
very high. We normalized the weights so they add 
to 1.0; thus, they have meaning only relative to 
each other. In Equation 1, i is the household, k 
is the dimension and ε is random noise (random 
variable, μ = 0, σ = 0.05) to represent bounded 
rationality 18:

In our model, scores for price and distance 
were allowed to vary by household income, be-
cause we wanted to match existing evidence 
that high-income households pay more for food 
and travel farther than low-income households. 
Each score was on a scale from 0 to 1, where 
1 was the most preferred score. Table 1 shows 
details on the scoring and brief justification for 
the choices we made. Weights were constant 
parameters for all households and did not vary 
by household attributes. The values for weights 
were determined through iteratively testing and 
changing model rules to adhere to calibration 
criteria: high-income households should spend 
more on food 40 and travel at least as far as low-
income households 41. Sensitivity to alternate 
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weighting and scoring for the utility function 
and size and household/store density of the 
grid were examined (see Verification, Calibra-
tion, External Validation).

Store behavior – food store sub-model

Stores were able to change the type of food they 
sold, but store prices remained fixed through-
out the experiment. We devised a simple way 
to proxy dynamic processes in store behaviors 
in order to test the effect of stronger feedbacks 
between households and stores and to allow the 
household choice set to be slightly more dynam-
ic. This “move-out/move-in” sub-model allowed 
low-performing stores to close. In locations with-
out a store for a certain period (180 time steps), 
a new store could move into the old store’s loca-
tion, either selling the same food type as the old 
one or changing food type. We preferred a this 
simple “move-out/move-in” sub-model for the 
following reasons: our model was not focused on 
store location decision making, we knew that we 
had imperfect information for modeling this pro-
cess, and it would take a lot of effort to construct 
a retail site selection sub-model.

Results – outcome measure and display

Main results are not reported here but the reader 
can find them in the original paper 11. Figure 2 
is an example of the display from one simula-
tion. The primary outcome measure was the 
income differential in diet (diet of high-income 
households minus diet of low-income house-
holds). Absolute diet values for high- and low-
income households were secondary outcomes. 
A simplifying assumption was used to derive 
each household’s diet: if the household shopped 
at a healthy food store, they ate healthier food 
and had a better diet. Diet was summarized as 
the average proportion of times the household 
shopped at a healthy food store (i.e., diet of 0.5 
meant they shopped at healthy food stores half of 
the time, diet values close to 0 meant they infre-
quently shopped at healthy food stores). Figure 3 
is an example of how results can be summarized. 
Because uncertainty and randomness was built 
into agent initialization (e.g., agent location and 
attribute assignment) as well as store behaviors 
and households’ selection of which store to go to, 
each experiment was run 60 times. From this, we 
obtained the distribution of outcomes and then 
summarized as the median and the 5th to 95th 
simulation percentile. Experimental results were 
summarized by averaging diet for the final 20% of 
the run of the model.

Verification, calibration, external validation

The model was simple and very abstract, not in-
tended to have high external validity or be highly 
realistic or quantitatively calibrated to data. As a 
tool for explaining observable phenomena and 
stimulating questions, this model had reasonable 
face validity. The calibration stage used observa-
tional studies and survey data from government 
and industry sources to guide agent decision-
making rules for generating plausible behaviors. 
Agent behaviors were tested against available da-
ta to reflect intuitive and known behaviors, such 
as high-income households spending more on 
food 40 and traveling at least as far or farther than 
low-income households 41. Verification and cali-
bration included testing sensitivity to alternate 
weighting and scoring for the utility function and 
size and household/store density of the grid. Fig-
ure 3 shows sensitivity summaries from the store 
behavior sub-model. The plot shows sensitivity 
to various assumptions in the store sub-model 
(“move-out/move-in” and changes in the type of 
foods are sold at the store; scenario #4 was used 
for the base scenario reported in the Auchincloss 
et al. original manuscript 11).

Programming environment

The model was developed using an old Java 
version of Repast (version 3.30, http://repast.
sourceforge.net). Additional libraries and code 
were from the Center for the Study of Complex 
Systems at the University of Michigan (http://
www.cscs.umich.edu) and were written in Java 
using a Windows/Eclipse environment (Figure 4).

Important limitations – low dynamics and
feedbacks

We briefly discuss here three limitations of the 
model. First, we did not envision or execute a 
full representation of the processes that result in 
income differentials in diet. However, our styl-
ization of the world is not itself a shortcoming 
and roughly matched our objective. Second, 
we did not “generate” changes in the built en-
vironment. Rather, we tested how the contexts 
shape behaviors by exogenously imposing vari-
ous segregation contexts. This strategy was not 
elegant, but is not a significant shortcoming. 
There were two reasons we did not “generate” 
the spatial sorting and neighborhood segrega-
tion. First, the point of the model was to see what 
happens in segregated contexts, not to generate 
the context. Second, generating segregation is 
an ongoing investigation topic that a number of 
researchers have taken on and requires a lot of 
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Figure 2

This four-panel figure illustrates the types of displays one can get from one run of a model. The scenario shown is where poor households were segregated 

from wealthy households and poor households were near stores with healthier foods. Panel 2a is a snapshot of the grid (world) were agents interact. 

Households are squares, stores are diamonds. Colors and shading map to select agent characteristics. Panels 2b,is an example of output that can assist  

with verification and validadtion: average number of customers at expensive stores (top line is total customers, middle line is high income, bottom line  

is low income). Panel 2c is a secondary outcome: healthier and unhealthy stores (top line is total stores, middle line is unhealthy, bottom line is healthier).  

Panel 2d is the main outcome: average proportion of times the household shopped at a helathier food store (on left side of plot top line is low income,  

bottom line is high income)11.

2a) 2b)

2c) 2d)

effort 42. The third limitation is that our model 
did not fully exploit the opportunity to model 
dynamics and feedback processes. We consider 
this a significant shortcoming. Feedbacks were 
primarily structural (not behavioral) and there 
was no formal learning and adaptation. For ex-
ample, households reacted to their environment 
based largely on static attributes (their income, 

location, and preference) and only a few dynam-
ics (habitual/past behavior and distance to store, 
which was somewhat dynamic due to move-out/
in store sub-model). Store agents exhibited only 
slightly more feedbacks: customer volume deter-
mined the probability of moving-out/in, which 
also enabled probabilities of changing the store’s 
food type.
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Challenges and opportunities for 
modeling

Systems modeling tools are still new for urban 
health researchers, but could be applied to a di-
verse series of questions, such as: Under what 
conditions do particular urban problems change 
over time and why?; To what extent are interac-
tions and feedbacks within and between entities 
shaping particular urban problems?; Under what 
conditions are we most likely to see unintended 
consequences to a planned intervention?. How-
ever, operationalizing these types of questions 
in a computational model will be difficult for 
many researchers. Modeling requires a large in-
vestment of time in computer programming and 
requires new ways of thinking. What follows are a 
few reminders when undertaking this work.

Focus on dynamics and feedbacks

Complex systems models require training our-
selves to think differently. The earliest stages of 
model conception are difficult. Despite wanting 
to go beyond traditional linear thinking, it can 
be challenging to envision how multiple influ-
ences and pathways are more than independent 
correlations among components and focus on 
feedbacks and interdependence between entities 
rather than direct causal linkages.

Complex systems does not mean complex
computational models

Given the limitless range of options available in 
ABM, the beginning modeler must ask a narrow 
question, work to establish a clear model pur-
pose, and ignore processes that are not directly 

Figure 3

Example of summary data from different scenarios. The x-axis show five store behavior algorithms that used various probabilities for store move-out/move in 

and changes in the type of foods are sold at the stores. The purpose of this plot was to illustrate how changes in store dynamics influence diet. Each algorithm 

was run 60 times to obtain the distribution of outcomes and then summarized as the median (symbol in the graph) and the 5th to 95th simulation percentile 

(bar in the graph). The right y-axis represents the average proportion of times that households shopped at a healthy food store. The left y-axis represents the 

difference in proportions between diet of high- and low-income households. Diet was derived from the average proportion of times the household shopped at 

a healthy food store 11.
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Figure 4

Outline of high-level description of the model presented in Auchincloss et al. 11.

INITIALIZATION

Set parameters: either user defined, or read from a parameter file

Create the grid for households and stores

Place households:

Make the specified number of households

Place each one on a random open square until grid is full

Assign household income using input settings

Place stores:

Make the specified number of stores

Place each one on a random square with no store already placed there (OK if square has a household)

If we’re clustering all stores, make sure the store is placed in the cluster region

Assign price and quality based on settings

For each store:

Reset variables

For each household:

Reset variables

Randomly determine initial quality preference based on the specified parameter

EACH TIME STEP

For each household:

Calculate utility for all stores (multiply scores by weights, sum, and add in random noise)

Choose the store with highest utility

Update statistics based on store chosen (total quality, distance traveled, money spent)

Every 15 time steps:

Stores calculate and reset statistics (profit, # customers high and low income, # turns high and low quality)

The model calculates all statistics (average health, distance, price, quality preference) by averaging all households and stores’ statistics

If stores are not static:

Every 30 steps, choose a store to close:

Choose cheap vs. expensive randomly based on the proportion of stores that are initially specified as cheap

If we are allowing a random store to close:

Choose whether a random (3% chance) or the worst performing (97% chance) store will close, otherwise choose the worst performing store 

to close:

If random, select a random store of chosen price that has been open more than 180 time steps

If worst performing:

Find the store with least number of customers

If that store has been open more than 180 time steps, select it

Otherwise, no store closes.

Tell the selected store to close: set store’s closure variable to true and reset its counters

For each store:

Keep track of number of turns that a store location has not had an open store and has had an open store

If store location has not had an open store > 180 time steps:

Store opens

Store assumes a food store type opposite of the previous store

Store assumes a food store price that is the same as the previous store (or if systematic price differential is activated, then store 

assumes food store price that is linked to the food store type)

Households calculate and reset statistics (health, average money spent, average distance traveled)
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relevant. Those new to ABM will be surprised to 
find that a very simple question becomes very 
complicated to operationalize.

Remain vigilant about deterministic modeling

The researcher needs to constantly check that 
(s)he is not establishing conditions or behavior 
rules that essentially already verify the hypoth-
esis of interest. For example, if one wants to ex-
plore income differentials in diet but our “base” 
models fix expensive stores as having healthy 
foods, then one would essentially pre-determine 
an income differential in the base model for all 
scenarios.

Take a sensible approach to assessing
reliability and validity

Do not become preoccupied with calibration and 
validation. Creating reliable and valid models is a 
difficult undertaking and should be approached 
sensibly. Many researchers spend most of their 
time and energy on calibration and validation 
and no time and energy remain for expanding 
on the science and exploring the most important 
questions.

Do not overpromise results

Due to the stochastic nature of micro-processes, 
ABM is not appropriate for detailed prediction 
and outputs should not be interpreted as precise 
estimates.

Recognize that complex systems
computation models are not for every
purpose and every audience

Not all questions posed within a system frame-
work need to be answered using a computation 
model. Even if the questions require a computa-
tional model, the type of product may not meet 
the researcher’s needs to make it worth the ef-
fort. First, the greatest value from modeling often 
comes from the modeling process itself rather 
than from the final model and its outputs 12. 
Second, model results allow for a qualitative in-
terpretation that may not be satisfying to some 
audiences. Third, ABM results can be difficult to 
summarize and communicate, especially to au-
diences unaccustomed to interpreting simula-
tions and ABM. For example, caveats need to be 
mentioned such as results are conditional on a 
confluence of other factors and on inputs and 
algorithms programmed into the model. Empiri-
cal research analyses also requires strong cave-
ats/assumptions. However, because agent-based 
models are constructed under fully simulated 
conditions, some audiences will discount the 
value of findings from ABM.

In sum, conceptual and computational mod-
els of complex systems forces us to carefully 
identify problems and processes that are likely 
impacted by dynamics and feedbacks that we 
typically ignore. The process of envisioning these 
models can propel us to think more realistically 
about complex mechanisms and perhaps think 
more creatively about potential solutions. ABM 
is a new computational tool for urban health re-
searchers to use to address seemingly intractable 
urban health problems. Researchers will need to 
evaluate for themselves whether it is a promising 
tool for their own research question.
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Resumen

Existe un interés creciente entre los estudiosos de la sa-
lud urbana en trabajar con problemas complejos, uti-
lizando modelos conceptuales y computacionales del 
campo de sistemas complejos. La modelación basada 
en agentes (MBA) es una herramienta de modelación 
computacional que suscita cada vez más interés. Sin 
embargo, varios estudiosos todavía no se encuentran 
familiarizados con el desarrollo e implementación de 
un MBA, lo que dificulta su aplicación y comprensión. 
En este artículo se ofrece inicialmente una breve guía 
introductoria para llevar a cabo un simple modelo ba-
sado en agentes. De esta manera el método se ilustra 
discutiendo un modelo basado en agentes, desarrollado 
previamente, que explora las desigualdades en la dieta 
en un contexto de segregación residencial urbana.

Simulación por Computador; Métodos 
Epidemiológicos; Teoría de Sistemas; Salud Urbana
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