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Abstract 

Despite much research in the identification 
of areas with malaria, it is urgent to further 
investigate mapping techniques to achieve 
better approaches in strategies to prevent, 
mitigate, and eradicate the mosquito and 
the illness eventually. By using spatial dis-
tributed modeling techniques with Geogra-
phical Information Systems (GIS), the study 
proposes methodology to map malaria risk 
zoning for the municipality of Buenaven-
tura in Colombia. The model proposed 
by Craig et al.1 using climatic information 
was adapted to the conditions of the study 
area regarding scale and spatial resolution. 
Geomorphologic and anthropic variables 
were added to improve spatial allocation 
of areas with higher risk of contracting the 
illness, refining zoning. Then, they were 
contrasted with the locations reported by 
health entities2, taking into account spatial 
distribution. The comparison of results sho-
ws a decrease in the area obtained initially 
using the Craig et al. model1 (1999), from 
5,422.4 km2 (89.1% of the municipality’s 
territory) to 624.3km2 (approximately 10% 
of the municipality’s area), yielding a total 
reduction of 78.8% when environmental 
and anthropic variables were included 
in the model. Data show that of the 9,863 
cases reported during 2001 to 2005 for 20 
selected towns as basis for the amount of 
surveyed malaria cases2, 1,132 were located 
in the very high-risk areas, 7,662 were in the 
areas of moderate risk, and 1,066 cases in 
low-risk areas, showing that 89% of the cases 
reported fell into the areas with higher risk 
for malaria. 

Keywords: Malaria. GIS. Spatial modeling. 
Environmental modeling. Malaria risk 
zoning. 
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Resumen

A pesar de muchas investigaciones en la 
identificación de las zonas con presencia 
de malaria, es urgente profundizar las 
técnicas de su mapeo para lograr mejores 
aproximaciones, para ayudar a focalizar los 
esfuerzos y recursos en prevención, mitiga-
ción y estrategias de erradicación del mos-
quito y eventualmente de la enfermedad. 
Usando modelación espacial distribuida 
con herramientas de Sistemas de Informa-
ción Geográfica (SIG), el presente estudio 
propone una metodología para el mapeo 
y la zonificación del riesgo de malaria en el 
municipio de Buenaventura – Colombia. Se 
presenta una estrategia de adaptación del 
modelo propuesto por Craig et al.1 (1999) 
que usa información climática, adaptándolo 
a las condiciones propias del área de estudio 
en cuanto a escala y resolución espacial. 
Se adicionaron variables geomorfológicas 
y antrópicas para mejorar la localización 
espacial de las zonas con mayor riesgo de 
contraer la enfermedad, refinando la zoni-
ficación, y se contrastó espacialmente con 
los sitios reportados por las entidades de 
salud2. La comparación de los resultados 
muestra la disminución del área que se 
obtuvo inicialmente con la aplicación del 
modelo de Craig et al. 1 de 5422.4 km2 (89.1% 
del territorio del municipio) a 624.3km2 
(aproximadamente 10% del área del mu-
nicipio), dando una reducción total del 
78.8% al incluir las variables ambientales 
y antrópicas en la producción del mapa de 
riesgo. Los datos muestran que de 9,860 
casos reportados durante 2001 y 2005 para 
20 localidades seleccionadas con base en la 
cantidad de registros de malaria2, 1,132 se 
ubicaron en las zonas identificadas de muy 
alto riesgo, 7,662 se sobrepusieron en las 
zonas de riesgo moderado y 1,066 casos en 
la zona de riesgo bajo, mostrando que el 89% 
de ellos se ubican en las zonas modeladas 
con mayor riesgo de malaria. 

Palabras claves: Malaria. SIG. Modelación 
espacial. Modelación ambiental. Zonifica-
ción  del riesgo de malaria.

Introduction 

Spatial distribution of associated varia-
bles, as well as transmission intensity, have 
become an urgent need, especially in ende-
mic areas3-12. This needs to be acknowledged 
to improve control and mitigation measures 
to fight against malaria. In this sense, carto-
graphy offers an understandable solution. 

However, mapping spatial distribution 
of malaria is complex for many reasons: 
initially, available data from malaria illness 
registrations are limited6, and on occasions 
they have not been collected thoroughly. 
Regarding illness mapping methodolo-
gies, from the cartographic point of view 
two strategies can be distinguished: the 
simplest is representation in a choropleth 
map. The second one is a distribution of 
clouds of points of sample localization13. 
A choropleth map distinguishes adminis-
trative units with different colors to relate 
with its value samples3,11,12,14,16. In this case, it 
shows the number of people affected by the 
illness. This map representation is clearly 
very widespread and not very precise from 
the spatial distribution point of view. The 
second strategy is the detailed localization 
of each sample or survey, or of the event for 
mapping6,11,16. This is much more accurate 
from the location point of view. However, in 
cases where there are many points located in 
a nearest position, the identification point 
can be lost. In such case, we can use a con-
vention representation instead. 

At the moment, there are several tools 
available in the Geographical Information 
Systems (GIS) that facilitate malaria spa-
tial representation through maps19,20. The 
methods that have been used for mapping 
the illness, vector, prevalent parasite, and 
affected areas are very diverse. Regions that 
suffer aggressively from the illness have 
allowed for very encompassing studies that 
involve several countries1,18. This is the case 
of MARA18, which have been operating in 
the African continent since the early 1990s. 
National politics in these countries have been 
able to increase knowledge on the condi-
tions associated with the illness, transmitter 
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vector, and possible epidemic conditions5. 
Regarding the same space scale, studies 
such as Sousa-Santos7 and Atanaka-Santos13 
involve results for a broad area in the Amazo-
nian region. Equally, statistical space models 
have made important findings in malaria 
risk spatial distribution7-13,20,21, and Bayesian 
geostatistical models are recognized as good 
tools for modeling the transmission of the 
risk of malaria 22,23. They produce smoothed 
maps in many environmental cases by using 
correlations between variables. 

Although known investigations have 
accurately determined the areas with fa-
vorable conditions for the transmission of 
the illness19,24-27, achievements produce vast 
extensions with high probability of illness 
presence8,13. However, a systemic metho-
dology has as yet not been formulated to 
integrate the different scale representation 
and the variables impacting the presence 
of the illness, vector or population affected. 
Additionally, it is necessary to approach 
space representation to provide information 
as basis to plan for activities to confront 
the illness16. In addition, the indicator used 
most recently to map malaria risk is the 
Annual Parasite Index (API). This index 
establishes a relationship between the total 
number of positive blood slides and the total 
population7,12 .

Although malaria has been implacable 
in Colombia, plans to control and mitigate 
the illness have not been executed with the 
required effectiveness. One of the main rea-
sons – aside from the most obvious (reduced 
budgets for health investment) – is the lack 
of knowledge on the precise risk areas. Co-
lombia is a tropical country with a diversity 
of climates and varied environmental condi-
tions. Eighty-five percent of the Colombian 
territory has an altitude below 1,600m above 
sea level. These are the areas with greater 
occurrence of the illness. The said areas are 
inhabited by 24 million Colombians (65% 
of the population) where they are more 
exposed to the illness28. The regions with 
greatest malaria risk in Colombia are the 
Pacific Coast, Urabá, the lowest area of the 
Cauca River basin, and the Sinú River basin. 

The Ministry of Health in Colombia, in 
its National Plan to Control Malaria, has 
recently tried to combat malaria with cam-
paigns based on timely diagnosis and tre-
atment, vector selective control, enhanced 
surveillance within public health agencies, 
and participation of social sectors. These 
activities include mitigation measures by 
using mosquito netting and fostering social 
awareness through educational campaigns 
for the prevention of mosquito proliferation 
by reducing its hatcheries on stagnated 
waters. They also aim at improving health 
conditions in the vast regions where the 
presence of illness is known29. 

The aim of this study is to develop a 
methodology for mapping malaria risk, 
which integrates physical variables such as 
temperature, precipitation and geomorpho-
logic features with related aspect to human 
being, which in this study will be recognized 
as anthropic variables.

Methods 

Mapping malaria risk infection is presen-
ted cartographically as a product of spatial 
correlations of analyzed events using GIS 
tools. The proposal integrates environmental 
variables (temperature and precipitation) 
within Craig et al. model1 to identify climate 
convenience for malaria. Then, physical 
landscape variables are added, and later 
combined spatially with anthropic variables, 
including human features. The spatial struc-
ture used was raster with 100m pixel size.

The exercise presented here was develo-
ped in three stages: 1) Characterization of the 
study area, compiling environmental, physi-
cal, and anthropic information; 2) adaptation 
and application of the model strategy in 
terms of scale and resolution, including data 
cleaning treatment for spatial distribution, 
parameterization and model refinement; 3) 
application of Craig et al.1 model to gene-
rate a Malaria Climatic Convenience Index 
(MCCI). In addition, we included natural 
variables to generate the Malaria Natural 
Convenience Index (MNCI), and finally the 
incorporation of an anthropogenic variable 
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to the model to generate the Malaria Risk 
Transmission Index (MRTI). At the end, MRTI 
is compared with malaria cases reported in 
the area2, in order to assess the model results.

Characterization of the study area 

The study area is the municipality of 
Buenaventura in the Department (State) 
of Valle del Cauca, Colombia (Figure 1), 
located in the southwest Pacific region of 
the country. This municipality covers a 
surface area of 6,297 km2, extending to the 
Western mountain range of the Colombian 
Andes, with elevations reaching 2,800 m 
above sea level. This allows the study area 
to have a great diversity of environmental 
conditions, in addition to the prevailing 
climatic dynamics in this region of the 
globe. It has an average temperature of 
25°C with higher temperatures in coastal 
areas, reaching 35°C and low temperatures 

around 11°C in the mountainous region. In 
the area, temperature conditions remain 
relatively constant during the whole year, 
but variations occur between day-time and 
night-time, with average changes around 
8°C in the low coastal areas, and changes 
in the mountain areas reaching variations 
up to 12°C29. Average annual precipitation 
is 7,000mm, with variations according to 
adiabatic conditions that can generate 
storms with 80mm precipitations in one 
day (Ibid). According to data from the 2005 
National Census, the total population of the 
Municipality is 328,794 inhabitants; 292,947 
of which occupy the urban area and 35,847 
the rural sector30. The population mainly 
comprises Afro-American descendants and 
indigenous populations and a small propor-
tion of colonists coming from the Depart-
ments of Antioquia, Caldas, and Risaralda 
(Ibid). Buenaventura is the main marine 
port of Colombia on the Pacific coast. 

Figure 1 - Location of  study area, Buenaventura – Colombia
Figura 1 - Localización del Área de Estudio, Buenaventura – Colombia.
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Model adaptation and input information 

The model distribution of malaria for-
mulated by Craig et al.1 for part of the African 
continent is adapted in this study. It consists 
of estimating the spatial distribution of the 
illness based on the influence of temperature 
and precipitation on the biological behavior 
of the parasite and mosquito transmitter. 
Although the model was designed for small 
scale studies (continent scale), it is adapted 
in both spatial and temporal resolution. It 
was also used because it involves spatial 
distributed environmental variables for a 
simple implementation. Thus, climatic con-
venience scenarios were built for the illness, 
applying a diffuse curve as a function of 
climatic variables using IDRISI ANDES 15.01 
software from Clark Labs, Clark University, 
and pertaining Fuzzy Logic module. The 
required environmental input information 
for the model was provided by the Instituto 
de Hidrología, Meteorología y Estudios Am-
bientales de Colombia – IDEAM, furnishing 
daily data on precipitation, temperature, and 
relative humidity, for the stations located 
throughout the Colombian Pacific coast for 
the period from 1999 to 2005. Data from 96 
stations were used: 78 stations measured 
precipitation and 18 measured temperature 
and relative humidity parameters. 

Precipitation and temperature infor-
mation was subjected to Data Exploratory 
Analysis (DEA), adopting techniques in-
troduced by Carvajal31. This includes data 
quality evaluation, filling the gaps in the 
series, data error cleaning from different 
sources, and others, which were carried out 
using the SPSS-10.0 Statistical Package for 
the Social Sciences 32. 

Spatial distribution for environmental 
variables was carried out by using data 
approved via DEA once the series were 
completed. Climatic variable maps were 
generated adapting the methodology sug-
gested by Leguizamón33, which establishes 
correlations between climatic variables and 
altitude. This method was previously intro-
duced by Rincón-Romero29. The source of 
elevation information came from the digital 

elevation model (DEM) from the Shuttle 
Radar Topography Mission (SRTM)34, with 
pixel size of 30m. The tool used for spatial 
data analysis was ARCGIS 9.035, with the 
module for spatial analysis. Thus, spatial 
distribution of temperature is expressed 
as a function of elevation with calculation 
of a vertical gradient for the Pacific region, 
based on 15 climatic stations on a monthly 
basis. The calculation of the vertical gradient 
for temperature was carried out with linear 
regression with a first-degree polynomial 
function that relates temperature (ºC) to 
altitude (masl); (temperature in the Y axis 
and elevation in the X axis). The function 
was Y = – 0.0031X + 25.926, with R2 = 0.8738. 
The result from this procedure was 12 maps 
of multi-annual monthly average tempera-
ture for the 1999–2005 period, one for each 
month. 

Precipitation and temperature variables 
were spatially distributed by grouping data 
monthly. The stations selected were those 
approved by the DEA process. A quarter-de-
gree polynomial linear regression function 
was defined to relate precipitation (mm) 
with altitude (masl); (Precipitation in the Y 
axis and elevation in the X axis). The func-
tion was: Y =1e-9X4 + 4.2e-6X3–6.5e-3X2 + 3.5X + 
384.68; R2 = 0.79, where: Y = calculated value 
of accumulated precipitation, X = Value of 
elevation (In this case the DEM is used). 

The thresholds for environmental varia-
bles were adjusted for the Colombian Pacific 
coast, since almost all cases of malaria were 
produced by P. vivax and P. falciparum 
parasites, for which environmental condi-
tions influence on the biological aspects of 
parasites. This adjustment was conducted 
according to the proposal by Londoño36, and 
values are presented in Table 1. 

Model application 

The application of the model was con-
ducted in the three instances mentioned, as 
illustrated in the diagram in Figure 2. This 
outline gives the operative sequence of orga-
nization of the data used in the process, the 
spatial distribution process for environmen-
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Table 1 - Spatial variables used in the model.
Tabela 1 - Variables espaciales usadas en el modelo

Spatial Index or 
variable

 
Description

 
Input data

Range of values
Convenience No convenience

Precipitation Spatial distribution of 
mean annual rainfall 

Weather station data 
and DTM

350mm annual < X < 
950mm annual

Out of range

Temperature Spatial distribution of 
mean annual temperature 

Weather station data 
and DTM

18ºC < X < 40ºC Out of range

MCCI
Malaria Climatic 
Convenience Index

Values between 0 - 1 Spatially 
Precipitation and 

temperature

Normalized value
1 or near to 1

Normalized value
0 or near to 0

DDNF 
Distance to Drainage 
Network for Flooding - 

Euclidean distance from 
drainage network

Spatial drainage 
network 

0m. Euclidean 
distance 

3500m. Euclidean 
distance

SSP
Suitable slope for 
pooling 

Almost flat areas with 
very small slope for 

pooling

 DTM Between 0 to 10 
degrees of inclination

More than 10 
degrees of inclination

MGCI 
Malaria 
Geomorphologic 
Conditions Index

Landscape physical 
conditions appropriate 

form malaria

 DDNF , SSP Normalized value
1 or near to 1

Normalized value
0 or near to 0

 MNCI
Malaria Natural 
Convenience Index

Physical natural 
conditions appropriate 

form malaria from climate 
and landscape

 MGCI, MCCI  Normalized value
1 or near to 1

Normalized value
0 or near to 0

DRA 
Distances to Roads of 
Access 

Euclidean distance 
to road for access for 

mobilization 

 Spatial data of roads  
0m Euclidean 

distance

60000m Euclidean 
distance

 Distances to towns 
- DT

Euclidean distance to 
towns and communities

Spatial location of 
main towns of study 

area

 0m Euclidean 
distance

20000m Euclidean 
distance

 Accessibility Distance 
to Water - ADW

Euclidean distance to 
water source for human 

consumption 

Spatial data of 
Main river network 

0m Euclidean 
distance

1000m Euclidean 
distance

Suitable Slopes for 
Living - SSL

Areas with low slope for 
house settlement

DTM 0 degrees of 
inclination

35 or more degrees 
of inclination

TOPI
The Territory 
Occupation Preference 
Index

Suitable areas with more 
amenities for house 

settlement

 SSL , ADW , DRA , DT Normalized value
1 or near to 1

Normalized value
0 or near to 0

MTRI Area with more 
probability to contract 

malaria 

 MCCI , MGCI , TOPI Normalized value
1 or near to 1

Normalized value
0 or near to 0

tal variables, and the whole algebra with 
raster maps used in the generation of the 
required space data. Finally, the proposed 
indicators were set to reach the risk index 
for malaria infection. The model operation 
is a simple algebraic map handling spatial 
data distribution. The logic is based on the 

spatial occurrence or existence of an event 
and its topological relationship evaluated 
as a Euclidean distance index or proximity. 
The results show the location of the exposed 
element (the human being) within a range 
of actions or people affected as per the 
evaluated variable. The same weight was 
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assumed for all variables, because there is 
no evidence that for this analysis and this 
scenario one is more important than others. 
By identifying the prevalence or the poten-
tial exposure of human beings to acquire 
the illness, parameters or action ranges were 
evaluated and limited according to com-
mon sense. Adjustments were made when 
one of them was more physically obvious 
than the others (Table 1). The expressed 
real values were normalized between zero 
and one (0–1) and stored in the pixels of 
the models for all the variables used. Thus, 
the pixels that took the value of one (1) and 
the nearest to one show the sites in which it 
is more likely to acquire the illness. On the 
other hand, zero and nearest to zero values 
represent the sites that should offer lower 
risks of acquiring the illness. These values 
were distributed by using a fussy logic de-
creasing Sigmoidal-type curve, adopting the 
limits of appropriate or inappropriate con-

ditions defined for that purpose (Table 1). 
Once the values were spatially distributed 
on the study area for each of the variables, 
the algebraic map treatment was carried 
out, as represented in the diagram in Figure 
2, which shows the operative design for the 
proposed model. All algebraic processes 
with maps were carried out with ArcGIS 
9.135. The maps that are not included in this 
paper due to volume can be requested from 
the authors directly by email. 

Variables included in the model were: 
•	 Malaria Climatic Convenience Index–

MCCI: Precipitation and temperature 
convenience scenarios were calculated 
for every month (total of 24 images, one 
by month), using the parameters propo-
sed by Craig et al.1 and the thresholds 
used for the study area. A new image 
was generated every month, creating 
an arithmetic mean between the two 
climatic data. 

Figure 2 - Diagram of Malaria transmission risk model.
Figura 2 - Diagrama del modelo de riesgo de transmisión de malaria.
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•	 Malaria Natural Convenience Index–
MNCI: In addition to the ones proposed 
by Craig et al.1, other natural variables 
were included at a larger geographical 
scale. The variables were selected taking 
into account their spatial relevance for 
analysis in the procedure to map malaria 
affected zones. All cartographic data (ne-
twork rivers, roads, town) were provided 
by the CVC (Corporación Valle del Cauca 
– regional environmental institution) in 
a 1:50,000 scale. Derived spatial variables 
were distance to rivers (Euclidean dis-
tance to drainage network for flooding 
- DDNF) and slopes of the land surface 
(Suitable slope for pooling - SSP) (Table 
1); both broadly highlighted in literature 
from the point of view of convenience 
for vector proliferation8,9. These can also 
be included by logic, because – first of 
all – there are natural features related to 
the proliferation of mosquito hatcheries, 
and secondly, availability of information 
offers the opportunity of increasing new 
parameters in the analysis to improve 
awareness of malaria behavior (in terms 
of scale, or information availability). 
These variables were thus considered: 
ü	 Distance to drainage network for 

flood (DDNF). The Euclidean distan-
ce index was calculated for draina-
ges, from drainage network informa-
tion, as a variable that impacts the 
creation of hatcheries of mosquitoes 
due to the possibility of water stag-
nation in areas nearest to the rivers. 
The limits adopted for appropriate or 
inappropriate conditions for water 
stagnation were a value of 0m as the 
most appropriate condition that was 
assigned as value one (1) and areas 
with a distance of 3,500m, which 
were defined as an inappropriate 
condition and assigned as value 
zero (0). Intermediate values were 
assigned for distance to rivers. Some 
authors propose a 2km distance to 
rivers8 that can be associated with 
malaria. Although the landscape 
area is within mountains, authors 

tend to enlarge the relevant distance.
ü	 Suitable slope for pooling - (SSP). To 

supplement the influence of the pre-
vious variable, the slope was used as a 
decisive factor of water stagnates. This 
is because in areas with low slopes, 
water tends to be dammed because of 
physical soil properties29. Also, being 
close to hydrological sources involves 
permeability conditions and retention 
of riverside floors. With this in mind, 
limits of appropriate or inappropriate 
conditions were defined in slope ter-
ms. Selected value ranges from 0 to 
10 degrees of slope inclination were 
considered as appropriate conditions 
for water stagnation, and other values 
as inappropriate (Table 1). 

Both, DDNF and SSP were generated for 
the Malaria Geomorphologic Conditions 
Index (MGCI), which is calculated as an ari-
thmetic mean of the previous indexes. The 
MNCI is calculated as the arithmetic mean 
of the index images of the MCCI and MGCI. 
In this first approach to the adaptation of 
the African model, natural scenarios were 
built including temperature, precipitation, 
DDNF, and SSP. The MNCI contains natural 
conditions that cause the presence of the 
malaria transmitter vector. Natural variables 
were combined showing the places where 
they coincide in location with geomorpho-
logic features that can propitiate conditions 
for vector proliferation , elements in which 
the human being does not have effects. 

In addition to these natural aspects that 
help vector proliferation, four aspects are 
added in this proposal that can help explain 
the presence of humans in particular places 
and their exposure to the potential presence 
of the vector. They are included in the Malaria 
Transmission Risk Index - MTRI. Based on 
the natural conditions of the territory, there 
are areas that offer people better living op-
tions than others, leading us to assume that 
people prefer to choose the place to live in 
terms of probability of being affected or not. 
In this study, this idea is expressed in an index 
called Territory Occupation Preference Index 
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(TOPI). The TOPI shows the probability of 
territory occupation in terms of anthropic-
environmental variables, presenting hypo-
thetical conditions in the place selected to 
settle, due to its suitable conditions for hu-
man activities, while there are places where 
people are exposed to malaria infection. To 
express this index, the elevation in spatial 
information was used to derive land slope 
surface and drainage network as criteria of 
proximity to access to water and important 
landscape amenities that environmental 
conditions offer to allocate housing. For 
this purpose, spatial information, such as 
road infrastructure and populated centers, 
was combined. Their proximity offers some 
comfort as criteria for selecting a place to live 
and therefore become decisive approaches. 
These last two variables were classified as 
anthropogenic variables, since they are ge-
nerated on the natural landscape by man. 
Thus, the approach used sets out to evaluate 
which aspects are to be kept in mind when 
locating housing. These offer some comfort, 
amenity, or improve the well-being of the 
community. They were evaluated in terms 
of proximity (Euclidian distance) to these 
features. Additionally, spatial propagation 
of malaria transmission advances with the 
development of new human establishments. 
Those that regularly present poor infrastruc-
ture conditions30, particularly for these re-
gions of the country, reveal greater incidence. 

Criteria taken into account in the TOPI 
construction were: 
•	 proximity to transportation roads and 

infrastructure for mobility (Distances 
to Roads of Access - DRA), 

•	 proximity to populated centers, health 
centers, and schools (Distances to towns 
- DT), 

•	 proximity to sources of water (Accessi-
bility Distance to Water - ADW), and

•	 slope of the land, where selection of 
areas of lower slope were used for hou-
sing construction (Suitable Slopes for 
Habitability - SSH). 

Based on spatial behavior variables, ap-
propriate or inappropriate habitability con-

ditions were theoretically defined (Table 1). 
These variables were calculated as follows: 
ü	 Distance to the Roads of Access (DRA): 

For the municipality of Buenaventura, 
transportation roads such as highways 
(paved and affirmed roads) were taken 
into account, along with the main drai-
nage network. Regarding transportation 
roads, appropriate or inappropriate 
habitability condition was established 
in terms of Euclidian distance to in-
frastructure. When the distance from 
the road or from the river is short, the 
probability of finding a community is 
greater. This index is comprised of the 
ADW and has threshold 0m starting from 
rivers as an appropriate condition, and 
4,000m as an inappropriate condition. 
The index of Proximity to Roads (DRA) 
adopts 0m starting from roads as an ap-
propriate condition, and 60,000m as an 
inappropriate condition. The latter value 
was adopted because the whole area has 
to have the possibility to be inhabited. 

ü	 Accessibility distance for Water (ADW): 
A condition for the selection of a site 
for housing is the availability of water 
for human consumption. Proximity to 
a water source is included in the model 
as a variable according to the Euclidean 
distance, where the adapted condition is 
0m to 4 km from sources of water. Larger 
distances were not contemplated as 
appropriate conditions. 

ü	 Distances to Towns (DT): Populated cen-
ters, health centers, and schools are con-
sidered as Infrastructure variables, since 
they are the places that can congregate 
the nearest community and share spaces 
with people that might be infected with 
malaria. As the previous variable, DT 
uses Infrastructure as appropriate or 
inappropriate habitability conditions 
in terms of distance. The shorter the 
Euclidean distance to infrastructure, the 
more likely to find human settlements. 
Hence, 0m is adopted as starting from 
the roads as an appropriate condition 
with an assigned value 1, and ending 
with 20,000m as an inappropriate con-
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dition with assigned value 0. 
ü	 Suitable Slope for Habitability (SSH): The 

slope was considered in this context as 
an anthropic factor, because it is inter-
preted as a key factor in the decision to 
create a new human settlement. Most 
of man’s activities are carried out in low 
slopes up to moderate inclinations. Slo-
pe limits were defined for appropriate or 
inappropriate conditions, where incli-
nation values between 0 to 35 degrees 
were set as appropriate slope conditions 
for habitability, and larger slopes were 
inappropriate conditions for the deve-
lopment of human activities. 

The Territory Occupation Preference 
Index (TOPI) is calculated by the algebraic 
means of the previous indexes by using GIS 
tools: TOPI = (SSH + ADW + DRA + DT) / 
4. The result is the spatial convenience or 
space preference for living, considered as 
an anthropic aspect, which is expressed 
in values from 0 to 1, where 0 is the most 
inconvenient value, and 1 represents the 
most convenient conditions for living or 
allocation of a place to live. No different 
weights were assigned because there is no 
existing measured evidence that support the 
differentiation. 

Finally, in the MTRI it is clear that for 
vector proliferation there is no evidence of 
which variable is more preponderant over 
the others. As a consequence, all variables 
will have the same weight within the spatial 
algebraic process. On the other hand, there 
is the selection of variables to define the risk 
of being contagious. In order to identify the 
risk, three groups of variables were built: 
climatic, morphological, and anthropoge-
nic variables. Each group of variables was 
assigned the same weight in the definition 
of risk to acquire malaria. The proposed 
calculation is MTRI = (MCCI + MGCI + TOPI) 
/ 3. The final risk map is shown in the results 
section (Figure 4). 

Results and analysis 

For the municipality of Buenaventura–

Colombia, six years of meteorological data 
were received from 50 stations of the 96 
used, showing a very marked rainy season 
for August, September, and December, and 
stronger rains in April and May; and less 
rain for the months of January, February, 
and March. 

According to the analysis of mean mon-
thly values, the minimum value of rain was 
registered at 78.4 mm for June and the maxi-
mum value was 125 mm in the same month. 
The registered mean monthly temperature 
value was 24.3º C with a variation ranging 
between 12.7 and 26º C. This information 
determines that the temperature variable 
does not have significant influence within 
the used model. This means that the tempe-
rature in the region significantly favors the 
proliferation of the vector, but it does not 
vary given its constant behavior. 

This study proposes the integration 
of spatial information to zone and repre-
sent spatial distribution of malaria on a 
cartographic medium scale for adapting 
the numerical model proposed by Craig et 
al.1 for malaria spatial distribution in the 
African continent. The model is based on 
climatic variability, particularly of rain and 
temperature conditions on the behavior of 
the weather that are favorable to the parasite 
and the vector transmitter, generating zones 
of climatic convenience for malaria creating 
the MCCI. The relationship between preci-
pitation and altitude was derived from data 
of 24 series, from 35 approved by DEA, loca-
ted in the North Pacific region. Precipitation 
images were generated and accumulated for 
every month on the basis of the relationship 
with altitude. The result from this procedure 
was 60 accumulated precipitation maps for 
the 2001–2005 period (corresponding to the 
period of readiness for malaria registrations) 
and 12 accumulated precipitation maps at 
level monthly average multi-annual and fi-
nally one more annual average multi-annual 
for the 1999–2005 period. In the same way 
temperature maps were built in order to 
support input data for MCCI. An aggrega-
ted map of MCCI is presented in Figure 3. 
Based on this information, geomorphologic 
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information was combined and produced 
12 scenarios of Natural Convenience for 
Malaria built at a multi-annual, monthly 
average for the (1999 - 2005) period of stu-
dy and a scenario of multi-annual average, 
which led to the MNCI (Figure 3). 

Adaptation of the Craig et al.1 model 
includes strategies of scale adjustments 
and the addition of new environmental and 
anthropic variables to highlight the space 
covered by the areas with the illness; and 
addition of natural physical variables and 
the spatial distribution of the population, 
generating a risk-transmission map of 
malaria. The work was developed by using 
Geographical Information Systems (GIS) 
tools at a 1:100,000 scale, applying modeling 
space methodologies, helping to identify, 
highlight, and remark those areas with more 
people affected by the illness; and showing 
their potential environmental suitability 
and risk of infection. The result is presented 
in Figure 4.

Regarding the indicators derived in this 
study, classification categories of the three 
indexes calculated (MCCI, MNCI, MTRI) 
were expressed initially with values betwe-

en zero and one. Results were reclassified 
into four categories given empirically by 
convenience of their spatial representation 
in the maps, following a proposal presented 
by Snow et al.3, and are presented in Table 2. 

Analyzing the classification from the 
Table 2, the very high class (of 0.75 to 1.0), of 
MCCI covers 71.5% of the study area; MNCI 
and MTRI cover up to 24.4% and 30.4%, 
respectively, showing significant refinement 
in the area reported. 

Despite climatologic data at daily tem-
porary resolution being available, they were 
added to monthly scales to permit adapting 
the model by Craig et al.1 and to have ele-
ments of comparison to these results. 

As the size of the study area was relatively 
small, the adopted spatial resolution of the 
pixel size (100m) compared to that proposed 
by Craig et al.1 (1km) was quite different. In 
consequence, the scale differences in car-
tographic data used, and landscape type in 
each case are also different. The study area 
has climatic variability in both temporal and 
spatial resolution. Climate changes in small 
periods, basically in rainy conditions due to 
humid winds coming over the Pacific Ocean 

Figure 3 - Spatial distributed MCCI (left) and MNCI (right) indexes.
Figura 3 - Índices de distribución espacial de MCCI (izquierda) y MNCI (derecha).
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Figure 4 - Spatial distribution of MTRI.
Figura 4 - Distribución espacial del Índice MTRI.

Table 2 - Comparison of results between MCCI, MNCI, and MTRI
Tabela 2 – Comparación de resultados entre los Índices MCCI, MNCI y MTRI

MCCI1 MNCI2 MRTI3

Class Area Km2 % Area Km2 % Area Km2 %

Low 489.8 8.1 643.7 10.6 457.9  7.5

Moderate  895.5 14.7 1188.9 19.5 1319.4 21.7

High 350.2 5.8 2767.0 45.5 2456.7 40.4

Very high 4347.9 71.5 1493.9 24.4 1849.4 30.4
1 Malaria Climatic Convenience Index
2 Malaria Natural Convenience Index
3 Malaria Transmission Risk Index

and crashing to the high mountains on the 
coast. There are also changes in the space 
due to orographic conditions that in very 
short distances produce strong changes in 
elevation, and consequently in temperature, 
vegetation and landscape too. Based on this 
variability, and with the help of data with 

more resolution in both space and time, 
epidemics of the illness or the increment 
or decrease of the reported disease cases in 
the area may be identified. 

The novel features of this model pro-
posal are: 
•	 it is not based only on environmental 
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conditions like previous approaches; 
•	 it uses greater spatial and temporal re-

solutions; 
•	 it includes geomorphologic data as a 

natural variable that impacts on the 
conditions that affect mosquito proli-
feration, and 

•	 it includes natural variables that are 
assessed as amenities to settles a com-
munity on a certain area. 

This combination refines the model 
results from the first approach of the MCCI, 
that estimates an area of 5,422.4 km2 in its 
high class (see Table 2), compared with 624.3 
km2 of the area in the MTRI for the same ca-
tegory. The zoning refinement from MCCI, 
MNCI and IRCM reduces the action areas, 
concentrating the zoning to those areas 
where rainwater stagnation occurs.

The inclusion of geomorphologic va-
riables in both, natural conveniences for 
mosquito proliferation, and habitability 
preference conditions of a place to settle, 
make this approach refine the areas of high 
risk in 79%, compared with areas described 
by the MCCI. This proposal reduces the 
area by 4,756 km2, focusing only on those 
areas with greater possibilities of having the 
illness; this becomes a decisive element for 
health entities that help to clearly identify 
where to develop mitigation campaigns and 
where to apply the scarce resources that can 
have a greater effectiveness index in the fight 
against the illness.

To compare the results obtained among 
each other (MCCI, MNCI, and MTRI), 
two types of analyses were carried out, 
one punctual and the other zonal. In the 
punctual analysis, three places were iden-
tified on the basis of information available, 
which reported the presence of the illness 
by health entities2. The more contrasted 
sites were the towns of Córdoba, Zacarias, 
and La Delfina. For the first two towns, 
the MCCI was very constant during every 
month of the year, which did not provide 
additional information to what was already 
known, while in La Delfina, malaria peaks 
were identified in February and August, 

which are related to its peculiar climatic 
conditions, where precipitation decreases to 
660mm, and temperature increases during 
the same months. The elements associated 
with MNCI and MTRI were not evaluated, 
because population concentration in those 
sites does not reflect differences compared 
to other towns. 

The spatial comparison of the three final 
indexes (MCCI, MNCI, and MTRI) is shown 
in Figures 3 and 4, including the reported 
cases of malaria, annually. They show with 
different magnitudes the places where 
infected people were reported, which may 
associate directly to the MTRI index. Results 
were contrasted spatially to data obtained 
from local health entities2. According to 
health data collected data between 2000 and 
2005, the sites with more malaria reported 
cases are highlighted as the legend key pre-
sented on figure 4. Spatial analysis shows 
89% of reported cases were located in areas 
classified among Very High and Moderate 
classes, showing a great coincidence of the 
reported cases with the results obtained 
with the MTRI. 

Discussion 

The risk concept is regularly associated 
with the uncertainty or probability that 
a future event will occur within a certain 
period and given conditions, resulting in 
economic or social losses and with its even-
tual impact38. In other areas of knowledge 
like environmental studies, there are diverse 
methodologies to evaluate the risk. In this 
case, susceptibility of an individual is the 
first feature to evaluate, then vulnerability is 
associated with an event where the subject 
can be exposed to a threat; once the threat 
is consolidated, an eventual hazard could 
be generated which it is understood as risk. 

Researchers have identified the im-
portance to acknowledge in some extent 
where are the areas of high risk for acquiring 
malaria4-14, and they have included the use 
of techniques to manage spatial data with 
GIS and RS1,8-11, but those attempts have 
not always achieved more appropriate 
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spatial representations to focus on the fight 
against malaria. It could be due to different 
circumstances (non-availability of spatial 
data, methodology of the data collection of 
the disease, ignorance of the precise spatial 
position of the people who have acquired 
the disease, among others). In consequen-
ce, approximations showing risk of acqui-
ring malaria are presented in maps using 
choropleth with edges as administrative 
units, which limit the scope of information 
offered, and do not give the accurate spatial 
position of the high malaria risk. In addition 
to identifying environmental and climatic 
conditions8,10,11, as the factors to associate 
to spread of vector and malaria parasite 
on a surface, there are other attempts to 
identify areas with malaria. Some authors 
have adopted the use of the Annual Parasite 
Index API7,13 for mapping Malaria risk, which 
has been expressed by the relation between 
number of positive blood cases and total 
population and represented by API. 

Each of these approaches is valuable, 
and seek to identify areas with high risk of 
malaria transmission by adopting a concept 
of regarding the basic information used, 
or search space of neighborhood relations 
for the behavior of the disease12. But these 
efforts might not cover all possibilities, 
obviously due to the approach given by 
the researcher or by the limitation derived 
from inconsistencies of the available spatial 
information.

Also the concept of risk mapping could 
be misunderstood or confused with zoning 
of priority areas13 using choropleth maps. It 
is also known that within the same admi-
nistrative unit boundary, variability in both 
environmental and climatic conditions can 
be quite large7, which makes this approach 
very broad and widespread throughout the 
region8,9,13. This might be very useful to co-
ver very large areas. It is acknowledged that 
these approaches generate problems of bor-
ders, and have led researchers to take into 
account spatial relations of neighborhood. 
They also make use of other information 
such as economic, environmental or social 
aspects that relate geographical sites other 

than the boundaries of administrative divi-
sions9,12. On the other hand, large scale and 
resolution generate more detail information 
but the same quality of input data11 is also 
needed, as is the case of the study of Bautista 
et al.11, who carried out at micro-scale for the 
Peruvian Amazon area.

Using these bases, the concept of map-
ping risk of malaria transmission adopted 
here is built spatially, distributed as a pro-
duct of spatial combination of natural and 
anthropic variables, which were assessed 
under adopted parameters (Table 1) for 
the study area and the scale of the analysis. 

The application of the model proposed 
by Craig et al.1 was designed to a continental 
scale, that produces the waited results in the 
zoning of the malaria climatic convenience. 
In the case of this model result for Buena-
ventura–Colombia, it covers almost the 
whole municipality area with the maximum 
condition of malaria climatic convenience 
index (Figure 3). In contrast, the map of 
MTRI reduces this area in 4,756 km2, with 
only 10% of the municipality area with more 
potential risk offered according to proposed 
conditions. This shows that in order to get 
better results, not only information with 
more spatial density is needed, but their 
treatment must be carried out at a greater 
spatial scale, moreover when the landscape 
characteristics of the study area are so he-
terogeneous, and with high spatial variabi-
lity in reduced areas, as it is the case of the 
municipality of Buenaventura-Colombia. 

In this sense, the utilization of GIS tools 
is of vital importance in epidemiological 
studies, given their capacity of spatial 
analysis, broadly discussed through the 
literature1,8-13,18,20. Equally, it is important to 
identify the most appropriate mathematical 
procedure to apply according to the study 
area, as well as the use of available infor-
mation and their spatial distribution over 
the study area, because wrong procedures 
may incur in erroneous conclusions and in 
consequence false results, facts discussed 
thoroughly by Brooket et al.39. As this propo-
sal implements a simple spatial numerical 
analysis, it shows that is not imperative to 
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use a very sophisticated mathematical spa-
tial distributed model in order to improve 
the knowledge on the spatial distribution of 
malaria. In some of the complex mathema-
tical models, results could show differences 
between algorithms instead of actual illness 
conditions. 

Although most of the studies reviewed 
concentrate on the relationship between 
environmental variables1,8,10 and the living 
conditions of the parasite and the presence 
of the illness throughout the API13; this ap-
proach demonstrates the need to include 
other variables of the landscape that equally 
are related to malaria. Additional variables 
suggested are: 
•	 the presence and location of human 

being in certain regions; 
•	 the characteristics of human behavior9, 

including conditions of preference for 
settling housing, and relationship with 
landscape; 

•	 landscape characteristics9 such as 
geomorphologic features, land cover, 
among others. 

Topics like population’s mobility, land 
use and cover change, deforested areas 
related to mosquito’s breeding, or API are 
not discussed in this work due to non-avai-
lability of data. However these are variables 
that should undoubtedly equally be inclu-
ded in this type of approaches. In addition 
to the mosquito as a transmitter agent 
of the illness, human beings can equally 
transport the illness, and their behavior can 
influence mobility of malaria and its spatial 
distribution. 

Regarding the study scale, it is evident 
that if we contrast the results of this study 
with those coming from large areas (small 
scale) of general studies1,11-13,,22,,40, that report 
cartography at country or continent level, 
they will show obvious differences. The scale 

comparison indicates that it is necessary to 
improve the level of studies, in order to focus 
on measures of prevention and mitigation 
against the illness, in order not to apply 
the scarce resources to a big general area 
and focus more resources on places where 
malaria is clearly identified. 

With the help of GIS tools, spatial 
analysis becomes more reliable1,7-13, but 
results from processes that use a spatial 
interpolation approach also could produce 
misunderstandings7,11, because landscape 
has spatial conditions which offer different 
aspects that could modify the spatial loca-
tion of the human being, such as rivers, roa-
ds, local fauna, geographic accidents among 
others8. This makes malaria epidemiology 
very complex. Some help to overcome or 
reduce the spatial interpolation effects at 
the local scale is to include geomorphologic 
variables within the analysis, which involves 
landscape variability9 as a part of the model. 

Here the MRTI is compared with repor-
ted infection cases2 that were the available 
information for the proper places; 89% of 
cases were located in areas with a MRTI 
greater than a 0.5 value. Unfortunately more 
detail information on the sick population 
was not available, such as API for the study 
area. 

Using the Craig et al.1 model without any 
other variable is very general for big scale 
studies and in particular not sensitive for 
very humid and heterogeneous landscape 
like Buenaventura Colombia. 

Still more research needs to be done in 
the sense of mapping malaria risk where 
approaches could be integrated with better 
resolution in space and time to produce 
valuable information to support decisions 
against the illness, parasite and vector. GIS 
spatial analysis seems to be a the best way 
to support approaches for mapping malaria 
risk. 
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