Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings


Las herramientas de bajo coste para el diagnóstico y seguimiento de la infección por VIH en entornos con pocos recursos


Outils à faible coût pour le diagnostic et le suivi de l'infection par le VIH dans des contextes de ressources limitées



Grace Wu; Muhammad H Zaman*

Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, United States of America




Low-cost technologies to diagnose and monitor human immunodeficiency virus (HIV) infection in developing countries are a major subject of current research and health care in the developing world. With the great need to increase access to affordable HIV monitoring services in rural areas of developing countries, much work has been focus on the development of point-of-care technologies that are affordable, robust, easy to use, portable and of sufficient quantitative accuracy to enable clinical decision-making. For diagnosis of HIV infection, some low-cost tests, such as lateral flow tests and enzyme-linked immunosorbent assays, are already in place and well established. However, portable quantitative tests for rapid HIV monitoring at the point of care have only recently been introduced to the market. In this review, we discuss low-cost tests for HIV diagnosis and monitoring in low-resource settings, including promising technologies for use at the point of care, that are available or close to market.


Las tecnologías de bajo coste para diagnosticar y controlar la infección por el virus de la inmunodeficiencia humana (VIH) en los países en desarrollo son un tema principal de las investigaciones en curso y la atención sanitaria en el mundo en desarrollo. Debido a la necesidad imperiosa de aumentar el acceso a servicios de seguimiento del VIH asequibles en las áreas rurales de los países en desarrollo, se ha trabajado mucho en el desarrollo de tecnologías de puntos de atención asequibles, robustas, de uso sencillo, transportables y suficientemente precisas desde el punto de vista cuantitativo como para permitir la toma de decisiones clínicas. Algunas de las pruebas de bajo coste para el diagnóstico de la infección por VIH, como la prueba de flujo lateral y las pruebas de inmunoabsorción enzimática, ya están disponibles y bien establecidas. Sin embargo, las pruebas cuantitativas portátiles para realizar un seguimiento rápido del VIH en los puntos de atención se han introducido recientemente en el mercado. En la presente revisión hablamos acerca de las pruebas de bajo coste para el diagnóstico y seguimiento del VIH en entornos con pocos recursos, incluidas las tecnologías prometedoras disponibles o listas para salir al mercado para su uso en los puntos de atención.


Les technologies à faible coût pour diagnostiquer et suivre l'infection par le virus de l'immunodéficience humaine (VIH) dans les pays en voie de développement sont un sujet majeur de la recherche actuelle et des soins de santé dans le monde en développement. Tenant compte du besoin crucial d'accroître l'accès à des services de suivi du VIH dans les zones rurales des pays en voie de développement, beaucoup d'énergie a été consacrée au développement de technologies sur les lieux des soins, qui soient abordables, robustes, faciles à utiliser, portables et d'une précision quantitative suffisante pour permettre la prise de décisions cliniques. Pour le diagnostic de l'infection par le VIH, des tests à faible coût, tels que des tests d'écoulement latéraux et des dosages immunoenzymatiques, sont déjà en place et bien établis. Cependant, les tests quantitatifs portables pour un suivi rapide du VIH sur les lieux des soins n'ont été que récemment introduits sur le marché. Dans cette étude, nous évaluons les tests de diagnostic et de suivi du VIH à faible coût dans des contextes de ressources limitées, y compris les technologies prometteuses pouvant être utilisées sur les lieux des soins, qui sont disponibles ou seront bientôt mises sur le marché.




New technologies and drugs for early diagnosis, continuous monitoring and treatment of human immunodeficiency virus (HIV) infection have improved the prognosis of infection and the quality of life among individuals living with HIV. In 2009, five years after the availability of antiretroviral therapy (ART) was expanded in sub-Saharan Africa, drug treatments alone reduced mortality due to HIV infection and acquired immunodeficiency syndrome by 20%.1 However, in the same year only one third of the 15 million people in low- and middle-income countries who were in need of ART received it. In these areas, a lack of resources, be they infrastructural, financial or human, hampers access to care for the resident populace. This results in delayed treatment, poor patient follow-up and poor adherence to ART, all of which contribute to the high rate of transmission and mortality.2 Therefore, substantial efforts have been taken to build low-cost and reliable point-of-care (POC) HIV diagnostic and monitoring solutions that effectively make early diagnosis and treatments available to even the most resource-constrained communities.

Current gold standards

Several gold standard technologies with high sensitivity and specificity are used worldwide to efficiently diagnose and monitor HIV infection. Enzyme-linked immunosorbent assays (ELISAs) and simple/rapid tests are performed to diagnose HIV infection on the basis of HIV antibody detection. Flow cytometry is used to monitor CD4+ T-cell count and thereby determine when to initiate ART. The more expensive nucleic acid tests, such as polymerase chain reaction (PCR) assays, are used to detect virologic failure by monitoring the HIV load. PCR of dried blood spots is also the most effective technology for early diagnosis of HIV infection in infants (also known as "early infant diagnosis"), since assays based on antibody detection are unsuitable because maternal anti-HIV antibodies can persist in infant blood for up to 18 months after birth. PCR using dried blood spots is also useful for diagnosing HIV infection when cold-chain transport of liquid plasma samples is too costly or logistically complicated.3,4

These technologies are useful in a broad spectrum of resource-limited settings but they have disadvantages. With the exception of rapid tests, the technologies are costly, take hours to perform and require highly skilled technicians and dedicated laboratory spaces. As a result, many developing countries are unable to meet the demand for HIV infection diagnosis and monitoring. Zambia, for instance, has one of the highest incidences of HIV infection in the world but only dedicates three PCR machines to the diagnosis of infection in infants. Furthermore, although clinical symptoms and CD4+ T-cell count have been used in resource-limited settings to determine when to initiate therapy and when virologic failure has occurred, there is growing support to consider the results of viral load monitoring before making therapeutic decisions. The high cost of nucleic acid tests, coupled with logistical challenges involved with cold-chain transport, will probably force many clinics to refer patients to larger clinics for further testing, which could make patient follow-up difficult and delay initiation of treatment.

On the basis of these considerations, it is not surprising that in some locations little or no overlap exists between the set of HIV-associated health-care technologies that meet a specific need and the set of technologies that are practical and affordable. Therefore, a more ideal suite of technologies for use at the point of care is called for, especially in resource-limited settings.

Ideal point-of-care tests

The ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end users) criteria, outlined by the World Health Organization (WHO), provide a good framework for evaluating POC devices for resource-limited environments. Tools that satisfy the ASSURED criteria primarily aim to provide same-day diagnosis and facilitate immediate decision-making.5 Quick receipt of results increases the number of people who know their HIV status, assists in delivering timely ART (especially to women in labour) and minimizes the number of patients lost to long-term follow-up.6,7 In addition, devices whose use requires minimal training and that have a high throughput can widen the pool of end users and alleviate congestion at HIV testing centres.8 Finally, such a device should be operable in resource-limited environs, which include those with unreliable electricity, non-sterile conditions and a lack of trained personnel to perform the duties typically reserved for nurses and health workers. Further examples of target specifications, listed in Table 1, will vary on the basis of the needs and setting in which the device will be used. For example, a device that detects a lower viral load may be less useful than a device that provides semiquantitative but clinically useful viral load ranges (e.g. levels denoting a low, medium and high risk of virologic failure). Hence, consultation with clinicians, health workers and other end users can result in well defined performance specifications that complement the ASSURED criteria and suit the specific needs of health professionals and patients.



Here, we provide an overview of low-cost and POC devices for the diagnosis and monitoring of HIV infection (Table 2). These include well established standard devices, those in the pipeline and those currently being researched. We focus only on low-cost devices that are free of the limitations associated with the use of gold standard laboratory tests in resource-limited areas. For a broader review of diagnostic and monitoring tests, we refer the reader to a recent summary of the nucleic acid tests in use and a review of commercially available ELISAs and nucleic acid tests.10,14


Low-cost tests for low-resource settings

HIV screening

A plethora of simple/rapid commercial tests are used in low-resource settings for HIV screening.10 The most ready-to-use types of rapid tests are lateral flow tests, which do not require reagents. In general, rapid tests are cheap (less than 1 United States dollar [US$] per capita), portable and easy to use, require few or no reagents or equipment and provide results within 30 minutes. Each test rapidly detects antibodies against HIV type 1 (HIV-1) and/or HIV type 2 (HIV-2) from a small volume of plasma, serum, whole blood, saliva or urine, with high specificity and sensitivity.10 The use of these tests has substantially increased the volume of HIV tests performed and the number of patients who learnt their results before being lost to follow-up.15 Also, since speedy testing is critical in prescribing intrapartum prophylactic therapy and antiretroviral drugs to prevent mother-to-child transmission, rapid HIV testing has had a positive effect on programmes to prevent HIV infection.6,16

Fear of stigmatization from testing positive for HIV can deter at-risk individuals from seeking consultation17 and can make people reluctant to disclose their HIV status. The use of saliva and urine specimens for rapid testing offers a discrete alternative to blood-based tests in settings where stigma, lack of education, cultural practices and privacy concerns undermine HIV prevention.18 In addition, the non-invasiveness of specimen collection eliminates the anxiety associated with blood collection and leads to higher rates of voluntary HIV testing.19,20 The OraQuick Rapid HIV-1/2 Antibody Test (Orasure Technologies, Inc., Bethlehem, United States of America) is a lateral flow rapid test for saliva specimens that performs as well as blood-based tests, even at low concentrations of HIV antigens in saliva.10,21 The Aware HIV-1/2 U (CALYPTE, Portland, USA), with 97.2% sensitivity and 100% specificity, is a rapid alternative to urine tests that rely on ELISAs and Western blots.22

The use of rapid HIV tests is expanding to include combination tests that detect both anti-HIV antibody and p24 antigen, as well as tests for early infant diagnosis (discussed below) and for HIV-1 and HIV-2 subtype differentiation.23 Detection of both antibody and antigen during the acute phase of infection is particularly beneficial to prevention efforts because the rate of HIV transmission is 26 times higher during this phase and can account for up to 50% of new HIV infections.23 The fourth-generation Determine HIV-1/2 Ag/Ab Combo (Alere, Waltham, USA) is an immunochromatographic rapid test that detects antigen and antibody separately. In two independent studies, the Determine HIV-1/2 Ag/Ab Combo showed sensitivities of 50% and 86% for antigen detection.24,25 Although ELISA has higher sensitivity, the Determine HIV-1/2 Ag/Ab Combo test is still able to detect early HIV infection. Larger studies are needed to confirm whether the Determine HIV-1/2 Ag/Ab Combo test is a suitable alternative to ELISA in low-resource locations.

The results of rapid tests for HIV detection are often confirmed by performing a secondary and/or tertiary test. These testing algorithms improve the positive predictive value of rapid tests in populations with a low prevalence of HIV infection, in which false-positive results are more common. The Centers for Disease Control and Prevention and WHO recommend the use of POC rapid testing strategies in accordance with the objective of the test (surveillance, blood screening or diagnosis), the sensitivity and specificity of the test, the local prevalence of HIV infection and the resources available for testing.26,27

HIV load monitoring

Reverse transcriptase, an enzyme present during viral replication, correlates linearly with HIV load and CD4+ T-cell count.28 As such, commercial assays for measuring this protein are cheap alternatives for virus load monitoring in low-resource settings. These tests are not performed at the point of care, but they yield results in a few hours and cost 80% less than nucleic acid tests.29

Several reports support the use of the EXAVir Load Version 3 nucleic acid test for HIV load monitoring in the developing world.14,29-31 In this test, a gel-separation step isolates virions from plasma components. The virions are then lysed and the lysates undergo a modified ELISA to measure the activity of reverse transcriptase. Virus load measurements with EXAViR versions 2 and 3 had excellent concordance with gold standard HIV RNA assays.13,31,32 In one study, in which patients receiving ART were monitored for 48 weeks with EXAViR and HIV RNA assays (Roche and Bayer), EXAViR displayed a specificity of 95% for HIV RNA detection in samples with RNA levels > 400 copies/mL.32 Viral load estimates based on reverse transcriptase tests are not directly comparable to those obtained through PCR because they have been found to under-quantify the HIV load.31,32 However, in places where PCR is unavailable, results of reverse transcriptase tests can be a cheaper viral load monitoring method. Further advantages of reverse transcriptase tests include their ability to detect multiple subtypes of HIV and their possible use in monitoring HIV load in paediatric patients.29

Levels of the HIV core protein p24 also correlate with HIV load and CD4+ T-cell count,28 and thus early generation p24 immunoassays offered low-cost options for measuring HIV load. p24 immunoassays are no longer considered for this activity, however, because of their low sensitivity, the high variability of the results between assays and the difficulty in standardizing the correlation between p24 and virus load in persons receiving ART.14,33,34

Early infant diagnosis

Since early intervention greatly reduces infant mortality due to HIV infection (by 75% in one study), HIV tests with high sensitivity would be enormously helpful to the thousands of infants at risk in countries where the distribution of PCR machines is limited.35 Current p24 immunoassays have better sensitivity over past-generation p24 tests because of the inclusion of a heat-denaturation step for separating p24-antibody complexes that commonly interfere with assay sensitivity. Many studies support the use of the Perkin Ultra p24 immunoassay for early diagnosis in infants aged 10 days to 12 months.30,36,37 p24 immunoassay of dried blood spot samples had 94.4% sensitivity and 100% specificity in another study. These findings are promising because dried blood spot analysis is common for infant diagnosis in rural areas.37 Compared with standard or reverse transcription PCR, p24 immunoassays are cheaper (up to US$ 10 in Africa) and less demanding of resources, which makes them a worthwhile option in clinics with limited access to more expensive tests.11 However, p24 immunoassays are not widely used owing to a lack of validation data. Also, because p24 immunoassays require specialized equipment and skilled staff, p24 rapid tests are preferred for early infant diagnosis in resource-limited locations.

Development of p24 rapid tests has focused mainly on improving sensitivity.38,39 In 2010, Parpia et al. tested a microfluidic p24 test on 25-µL plasma samples from 389 South African infants.40 Their design included a heat-shock component to break the antigen-antibody complexes. They achieved 95% sensitivity, 99% specificity and a detection limit of 42 500 RNA copies/mL. The current prototype now returns results in 20 minutes. This work, part of the Northwestern Global Health Foundation, has clinical trials planned for 2012.12

Portable tests

Portable tests for HIV monitoring comprise CD4+ T-cell count assays and HIV quantification assays. Currently, only a handful of truly portable CD4+ T-cell counters are available commercially: PointCare NOW, the CyFlow miniPOC (Partec), Pima Test (Alere) and Daktari CD4+ (Daktari Diagnostics). All are fully automated, can be powered by batteries or electricity, use < 25 µL of blood and provide same-day results. Additional POC CD4+ T-cell tests in development include a multiplex infectious disease test (MBio Diagnostics) and a semiquantitative, electricity-free CD4+ T-cell blood test (Zyomyx).12

Both the PointCare NOW and CyFlow miniPOC measure absolute CD4+ T-cell counts and the percentage of T-cells expressing CD4+ and do not require cold chain for reagent storage. The CyFlow miniPOC has a substantially high throughput, with the capability of processing 250 tests per day. No independent diagnostic data for either test were available at the time of writing.

The Pima Test and Daktari CD4+ are cartridge-based tests in which a blood sample is inserted into a disposable cartridge containing the necessary reagents per test. Daktari CD4+ is still undergoing performance evaluation but the Pima Test, introduced in late 2010, has yielded results comparable to those of other ART monitoring devices.8,41-43 While the majority of Pima Test measurements underestimate CD4+ T-cell counts, one study demonstrated 96.3% sensitivity for concentrations below a cut-off of 250 cells/µL.42 A recent study also found that Pima Test capillary blood samples yielded less precise results than venous blood samples.43 This highlights the need to address sources of error that can decrease a POC test's accuracy.

No portable PCR tests for HIV quantification are currently on the market but several are in the pipeline. According to PATH, a low-cost version of a fully automated rapid PCR device is in development for resource-limited settings.12 This test, known as the Liat HIV Quant Assay (IQuum Inc., Marlborough, USA), uses whole blood in a single container for PCR amplification and analysis in 88 minutes.44 The SAMBA HIV-1 test is a dipstick-based nucleic-acid assay for HIV detection and amplification. After collection of viral RNA, isothermal amplification of RNA is automated by a machine. The current prototype tests one sample in < 2 hours but future prototypes are expected to test 5-10 samples simultaneously. In one study, SAMBA results agreed with reverse transcription PCR results for 69 clinical samples with different viral subtypes or viral loads (78 to 9.5 × 106 copies/mL).45 Additional advantages of this test include: (i) its lower cost because, unlike PCR, it requires no thermocyclers; (ii) its multiplexing capability, which permits detection of HIV subtypes; and (iii) same-day diagnosis. An additional SAMBA test for qualitative early infant diagnosis is also in the works. Other companies developing POC viral load tests include Alere and Micronics. Several other POC PCR platforms in development might also be easily adapted for HIV-associated health care.12

Additional considerations

With the increased emergence of POC tests on the market, validation studies are useful to shed light on those ASSURED criteria that are not being satisfied by the tests. First, these studies have commonly shown that interpretation of a given test's results requires further analysis. For example, to determine when to initiate ART in children aged less than 5 years, the CD4+ T-cell fraction (%) is a better criterion for clinical decision-making than the CD4+ T-cell count, which is highly variable in this age group.46 Therefore, an assay such as the Pima Test would be insufficient in settings where HIV-infected children 5 years of age or younger are in care, owing to the need for flow cytometry or age/clinical-stage tables to estimate the CD4+ T-cell fraction in these individuals.8 In other cases, linking data capture/analysis to POC testing may require equipment (e.g. power supplies, printers, optical equipment and data processors) and maintenance beyond that required by the POC test alone. Often, there are trade-offs between high-throughput devices (e.g. CyFlow miniPOC), portability (e.g. Pima Test) and time to result, and such tradeoffs may help determine which platform is most suitable for a particular locality.

Second, POC tests may have lower throughput, even if they yield faster results. The non-portable Partec CyFlow is capable of testing up to 400 samples per day, whereas the Pima Test is limited to 20-25 samples in an 8-hour workday. Third, some tests may require additional skill and consumable goods to ensure accurate, safe and sterile sample collection. Although lancets are appropriate for collecting the blood samples evaluated by POC tests, the Pima Test evaluation study showed that the volume of blood collected by a single fingerprick was in some cases insufficient for analysis.8,41 The discomfort from subsequent fingerpricks and the risk of sharps-related injury could be minimized by using microtainers for collecting large volumes (approximately 500 µL) of blood. Fourth, overall a POC test may cost as much as current standard laboratory tests once the costs of maintenance, disposable goods, sample preparation, sample shipment and results analysis are factored in. Each Pima Test costs approximately US$ 10 without counting additional costs, whereas a single nucleic acid test has an overall cost of approximately US$ 7-8.43 Early infant diagnosis test kits alone may cost up to 55% of the overall price of test-related materials.35


Current research on POC tests

A substantial amount of research continues to be performed for the development of POC HIV tests, in tandem with the development of gold standard tests and new testing technologies. In microfluidics research, recent advances in multiplex diagnosis, label-free detection and lensless imaging have demonstrated high sensitivity and specificity for HIV detection.47-49 Lensless imaging work in particular has included hand-held prototypes no larger or heavier than a mobile phone. Such devices also have the capability of transmitting test results wirelessly to ministries of health, health clinics and other end users to monitor trends in HIV infection and virologic status. Desai et al. review several other exciting research endeavours involving HIV tests that will be interesting for practitioners and engineers to monitor in the coming years.50



Several low-cost and portable tools for HIV diagnosis and monitoring in low-resource settings are currently in the pipeline or were recently introduced into the market. Ongoing field studies have shown that, unlike current gold standard tests, they provide same-day diagnoses in a reliable, rapid, affordable, simple and robust manner. POC diagnostic tests still need validation, so engineers, physicians and health workers should be aware of them so they can participate in their evaluation and improvement and ensure that the tests are ready for commercial use.

Competing interests: None declared.



1. Joint United Nations Programme on HIV/AIDS. Global report: UNAIDS report on the global AIDS epidemic 2010. Geneva: UNAIDS; 2010. Available from: http://www.unaids.org/documents/20101123_GlobalReport_em.pdf [accessed 19 October 2012]          .

2. Curioso WH, Kurth AE, Cabello R, Segura P, Berry DL. Usability evaluation of personal digital assistants (PDAs) to support HIV treatment adherence and safer sex behavior in Peru. AMIA Annu Symp Proc 2008:918. PMID:18999317        

3. Lofgren SM, Morrissey AB, Chevallier CC, Malabeja AI, Edmonds S, Amos B et al. Evaluation of a dried blood spot HIV-1 RNA program for early infant diagnosis and viral load monitoring at rural and remote healthcare facilities. AIDS 2009;23:2459-66. doi:10.1097/QAD.0b013e328331f702 PMID:19741481        

4. Pathfinder International [Internet]. Early infant diagnosis of HIV through dried blood spot testing: Pathfinder International/Kenya's prevention of mother to child transmission project. Watertown: Pathfinder International; 2007. Available from: http://www.pathfinder.org/publications-tools/Early-Infant-Diagnosis-of-HIV-through-Dried-Blood-Spot-Tesing-Pathfinder-InternationalKenyas-Prevention-of-Mother-to-Child-Transmission-Project.html [accessed 19 October 2012]          .

5. Mabey D, Peeling RW, Ustianowski A, Perkins MD. Tropical infectious diseases: diagnostics for the developing world. Nat Rev Microbiol 2004;2:231-40. doi:10.1038/nrmicro841 PMID:15083158        

6. Branson BM. Point-of-care rapid tests for HIV antibody. J Lab Med 2003;27:288-95. doi:10.1046/j.1439-0477.2003.03049.x        

7. Bland RM. Management of HIV-infected children in Africa: progress and challenges. Arch Dis Child 2011;96:911-5. doi:10.1136/adc.2010.193789 PMID:21562058        

8. Mtapuri-Zinyowera S, Chideme M, Mangwanya D, Mugurungi O, Gudukeya S, Hatzold K et al. Evaluation of the PIMA point-of-care CD4 analyzer in VCT clinics in Zimbabwe. J Acquir Immune Defic Syndr 2010;55:1-7. doi:10.1097/QAI.0b013e3181e93071 PMID:20622679        

9. World Health Organization [Internet]. HIV assays; operational characteristics (phase 1). Report 15. Antigen/antibody ELISAS. Geneva: World Health Organization & Joint United Nations Programme on HIV/AIDS; 2004. Available from: http://www.who.int/diagnostics_laboratory/publications/evaluations/en/index.html [accessed 19 October 2012]          .

10. World Health Organization [Internet]. HIV test kit evaluations. HIV assays: operational characteristics (phase 1). Report 14. Simple/rapid tests. Geneva: World Health Organization & Joint United Nations Programme on HIV/AIDS; 2004. Available from: http://www.who.int/diagnostics_laboratory/evaluations/hiv/en/ [accessed 16 October 2012]          .

11. Finnegan J, Noble K-A, Lodha R. Evidence behind the WHO guidelines: hospital care for children: what is the role of HIV antigen testing in infants <12-months old? J Trop Pediatr 2009;55:216-8. doi:10.1093/tropej/fmp056 PMID:19602485        

12. Murtaugh M. UNITAID technical report: HIV/AIDS diagnostics landscape. Geneva: UNITAID; 2011. Available from: http://www.unitaid.eu/about/market-approach/9-uncategorised/345-technical-reports [accessed 16 October 2012]          .

13. Greengrass VL, Plate MM, Steele PM, Denholm JT, Cherry CL, Morris LM et al. Evaluation of the Cavidi ExaVir Load assay (version 3) for plasma human immunodeficiency virus type 1 load monitoring. J Clin Microbiol 2009;47:3011-3. doi:10.1128/JCM.00805-09 PMID:19605583        

14. Stevens WS, Scott LE, Crowe SM. Quantifying HIV for monitoring antiretroviral therapy in resource-poor settings. J Infect Dis 2010;201(Suppl 1):S16-26. doi:10.1086/650392 PMID:20225942        

15. Kassler WJ, Alwano-Edyegu MG, Marum E, Biryahwaho B, Kataaha P, Dillon B. Rapid HIV testing with same-day results: a field trial in Uganda. Int J STD AIDS 1998;9:134-8. doi:10.1258/0956462981921882 PMID:9530897        

16. Bulterys M, Jamieson DJ, O'Sullivan MJ, Cohen MH, Maupin R, Nesheim S et al.; Mother-Infant Rapid Intervention At Delivery (MIRIAD) Study Group. Rapid HIV-1 testing during labor: a multicenter study. JAMA 2004;292:219-23. doi:10.1001/jama.292.2.219 PMID:15249571        

17. Brown L, Macintyre K, Trujillo L. Interventions to reduce HIV/AIDS stigma: what have we learned? AIDS Educ Prev 2003;15:49-69. doi:10.1521/aeap. PMID:12627743        

18. Bond V, Chase E, Aggleton P. Stigma, HIV/AIDS and prevention of mother-to-child transmission in Zambia. Eval Program Plann 2002;25:347-56. doi:10.1016/S0149-7189(02)00046-0        

19. Hodinka RL, Nagashunmugam T, Malamud D. Detection of human immunodeficiency virus antibodies in oral fluids. Clin Diagn Lab Immunol 1998;5:419-26. PMID:9665942        

20. Spielberg F, Branson BM, Goldbaum GM, Lockhart D, Kurth A, Celum CL et al. Overcoming barriers to HIV testing: preferences for new strategies among clients of a needle exchange, a sexually transmitted disease clinic, and sex venues for men who have sex with men. J Acquir Immune Defic Syndr 2003;32:318-27. doi:10.1097/00126334-200303010-00012 PMID:12626893        

21. Parisi MR, Soldini L, Di Perri G, Tiberi S, Lazzarin A, Lillo FB. Offer of rapid testing and alternative biological samples as practical tools to implement HIV screening programs. New Microbiol 2009;32:391-6. PMID:20128446        

22. World Health Organization [Internet]. HIV assays: operational characteristics (phase 1). Report 13. Urine and saliva tests. Geneva: World Health Organization; 2004. Available from: http://www.who.int/diagnostics_laboratory/evaluations/hiv/en/ [accessed 16 October 2012]          .

23. Branson BM. The future of HIV testing. J Acquir Immune Defic Syndr 2010;55:S102-5. doi:10.1097/QAI.0b013e3181fbca44 PMID:21406978        

24. Fox J, Dunn H, O'Shea S. Low rates of p24 antigen detection using a fourth-generation point of care HIV test. Sex Transm Infect 2011;87:178-9. doi:10.1136/sti.2010.042564 PMID:21084439        

25. Beelaert G, Fransen K. Evaluation of a rapid and simple fourth-generation HIV screening assay for qualitative detection of HIV p24 antigen and/or antibodies to HIV-1 and HIV-2. J Virol Methods 2010;168:218-22. doi:10.1016/j.jviromet.2010.06.002 PMID:20561542        

26. Guidelines for using HIV testing technologies in surveillance: selection, evaluation, and implementation. Geneva: World Health Organization & Joint United Nations Programme on HIV/AIDS; 2001. Available from: http://www.unaids.org/en/dataanalysis/knowyourepidemic/epidemiologypublications/ [accessed 19 October 2012]          .

27. Bennett B, Branson B, Delaney K, Owen M, Pentella M, Werner B. HIV testing algorithms: a status report, executive summary. Silver Spring: The Association of Public Health Laboratories; 2009. Available from: http://www.aphl.org/aphlprograms/infectious/hiv/Pages/HIVStatusReport.aspx [accessed 16 October 2012]          .

28. Sivapalasingam S, Essajee S, Nyambi PN, Itri V, Hanna B, Holzman R et al. Human immunodeficiency virus (HIV) reverse transcriptase activity correlates with HIV RNA load: implications for resource-limited settings. J Clin Microbiol 2005;43:3793-6. doi:10.1128/JCM.43.8.3793-3796.2005 PMID:16081912        

29. Steegen K, Luchters S, De Cabooter N, Reynaerts J, Mandaliya K, Plum J et al. Evaluation of two commercially available alternatives for HIV-1 viral load testing in resource-limited settings. J Virol Methods 2007;146:178-87. doi:10.1016/j.jviromet.2007.06.019 PMID:17686534        

30. Fiscus SA, Wiener J, Abrams EJ, Bulterys M, Cachafeiro A, Respess RA. Ultrasensitive p24 antigen assay for diagnosis of perinatal human immunodeficiency virus type 1 infection. J Clin Microbiol 2007;45:2274-7. doi:10.1128/JCM.00813-07 PMID:17475763        

31. Labbett W, Garcia-Diaz A, Fox Z, Clewley GS, Fernandez T, Johnson M et al. Comparative evaluation of the ExaVir Load version 3 reverse transcriptase assay for measurement of human immunodeficiency virus type 1 plasma load. J Clin Microbiol 2009;47:3266-70. doi:10.1128/JCM.00715-09 PMID:19656978        

32. Sivapalasingam S, Wangechi B, Marshed F, Laverty M, Essajee S, Holzman RS et al. Monitoring virologic responses to antiretroviral therapy in HIV-infected adults in Kenya: evaluation of a low-cost viral load assay. PLoS ONE 2009;4:e6828. doi:10.1371/journal.pone.0006828 PMID:19714253        

33. Stevens G, Rekhviashvili N, Scott LE, Gonin R, Stevens W. Evaluation of two commercially available, inexpensive alternative assays used for assessing viral load in a cohort of human immunodeficiency virus type 1 subtype C-infected patients from South Africa. J Clin Microbiol 2005;43:857-61. doi:10.1128/JCM.43.2.857-861.2005 PMID:15695692        

34. Bonard D, Rouet F, Toni TA, Minga A, Huet C, Ekouévi DK et al.; ANRS 1220 PRIMO-CI Study Group. Field evaluation of an improved assay using a heat-dissociated p24 antigen for adults mainly infected with HIV-1 CRF02_AG strains in Côte d'Ivoire, West Africa. J Acquir Immune Defic Syndr 2003;34:267-73. doi:10.1097/00126334-200311010-00002 PMID:14600570        

35. Ciaranello AL, Park J-E, Ramirez-Avila L, Freedberg KA, Walensky RP, Leroy V. Early infant HIV-1 diagnosis programs in resource-limited settings: opportunities for improved outcomes and more cost-effective interventions. BMC Med 2011;9:59. doi:10.1186/1741-7015-9-59 PMID:21599888        

36. George E, Beauharnais CA, Brignoli E, Noel F, Bois G, De Matteis Rouzier P et al. Potential of a simplified p24 assay for early diagnosis of infant human immunodeficiency virus type 1 infection in Haiti. J Clin Microbiol 2007;45:3416-8. doi:10.1128/JCM.01314-07 PMID:17670933        

37. Cachafeiro A, Sherman GG, Sohn AH, Beck-Sague C, Fiscus SA. Diagnosis of human immunodeficiency virus type 1 infection in infants by use of dried blood spots and an ultrasensitive p24 antigen assay. J Clin Microbiol 2009;47:459-62. doi:10.1128/JCM.01181-08 PMID:19073872        

38. Nabatiyan A, Baumann MA, Parpia Z, Kelso D. A lateral flow-based ultra-sensitive p24 HIV assay utilizing fluorescent microparticles. J Acquir Immune Defic Syndr 2010;53:55-61. doi:10.1097/QAI.0b013e3181c4b9d5 PMID:19927003        

39. Workman S, Wells SK, Pau C-P, Owen SM, Dong XF, LaBorde R et al. Rapid detection of HIV-1 p24 antigen using magnetic immuno-chromatography (MICT). J Virol Methods 2009;160:14-21. doi:10.1016/j.jviromet.2009.04.003 PMID:19482361        

40. Parpia ZA, Elghanian R, Nabatiyan A, Hardie DR, Kelso DM. p24 antigen rapid test for diagnosis of acute pediatric HIV infection. J Acquir Immune Defic Syndr 2010;55:413-9. doi:10.1097/QAI.0b013e3181f1afbc PMID:20811289        

41. Sitoe N, Luecke E, Tembe N, Matavele R, Cumbane V, Macassa E et al. Absolute and percent CD4+ T-cell enumeration by flow cytometry using capillary blood. J Immunol Methods 2011;372:1-6. doi:10.1016/j.jim.2011.07.008 PMID:21787779        

42. Manabe YC, Wang Y, Elbireer A, Auerbach B, Castelnuovo B. Evaluation of portable point-of-care CD4 counter with high sensitivity for detecting patients eligible for antiretroviral therapy. PLoS One 2012;7:e34319. doi:10.1371/journal.pone.0034319 PMID:22536323        

43. Glencross DK, Coetzee LM, Faal M, Masango M, Stevens WS, Venter WF et al. Performance evaluation of the Pima™ point-of-care CD4 analyser using capillary blood sampling in field tests in South Africa. J Int AIDS Soc 2012;15:3. doi:10.1186/1758-2652-15-3 PMID:22284546        

44. Tanriverdi S, Chen L, Chen S. A rapid and automated sample-to-result HIV load test for near-patient application. J Infect Dis 2010;201(Suppl 1):S52-8. doi:10.1086/650387 PMID:20225947        

45. Lee HH, Dineva MA, Chua YL, Ritchie AV, Ushiro-Lumb I, Wisniewski CA. Simple amplification-based assay: a nucleic acid-based point-of-care platform for HIV-1 testing. J Infect Dis 2010;201(Suppl 1):S65-72. doi:10.1086/650385 PMID:20225949        

46. World Health Organization [Internet]. Antiretroviral therapy for infection in infants and children: towards universal access. Recommendations for a public health approach - 2012 revision. Geneva: WHO; 2010. Available from: http://apps.who.int/medicinedocs/en/m/abstract/Js18809en/ [accessed 16 October 2012]          .

47. Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V, Parsa H et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 2011;17:1015-9. doi:10.1038/nm.2408 PMID:21804541        

48. Daaboul GG, Yurt A, Zhang X, Hwang GM, Goldberg BB, Ünlü MS. High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification. Nano Lett 2010;10:4727-31. doi:10.1021/nl103210p PMID:20964282        

49. Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O et al. Lensfree microscopy on a cellphone. Lab Chip 2010;10:1787-92. doi:10.1039/c003477k PMID:20445943        

50. Desai D, Wu G, Zaman MH. Tackling HIV through robust diagnostics in the developing world: current status and future opportunities. Lab Chip 2011;11:194-211. doi:10.1039/c0lc00340a PMID:21125097        



Submitted: 22 January 2012
Revised version received: 10 July 2012
Accepted: 6 September 2012
Published online: 19 October 2012



* Correspondence to Muhammad H Zaman (e-mail: zaman@bu.edu).

World Health Organization Genebra - Genebra - Switzerland
E-mail: bulletin@who.int