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Abstract
Objective. The goal of this study was to assess linkages be-
tween microclimate and longer-term ENSO-related weather 
forcing on the week-to-week changes in dengue prevalence 
in Matamoros, Tamaulipas, Mexico, over a recent decade of 
dengue observations. Material and Methods. An auto-re-
gressive model to evaluate the role of climatic factors (sea-
surface temperature) and weather (maximum temperature, 
minimum temperature, precipitation) on dengue incidence 
over the period 1995-2005, was developed by conducting 
time-series analysis. Results. Dengue incidence increased 
by 2.6% (95% CI: 0.2-5.1) one week after every 1ºC increase 
in weekly maximum temperature and increased 1.9% (95% 
CI: -0.1-3.9) two weeks after every 1 cm increase in weekly 
precipitation. Every 1ºC increase in sea surface tempera-
tures (El Niño region 3.4 ) was followed by a 19.4% (95% 
CI: -4.7-43.5) increase in dengue incidence (18 weeks later). 
Conclusions. Climate and weather factors play a small but 
significant role in dengue transmission in Matamoros, Mexico. 
This study may provide baseline information for identifying 
potential longer-term effects of global climate change on 
dengue expected in the coming decades. To our knowledge, 
this is the first study to investigate the potential associations 
between climate and weather events and dengue incidence 
in this geographical area.
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Resumen
Objetivo. Evaluar los vínculos entre el microclima, las va-
riables relacionadas al fenómeno de El Niño Oscilación del 
Sur (ENSO) y los cambios en el reporte semanal de casos 
de dengue en el área de Matamoros, Tamaulipas, México, a lo 
largo de una década de observaciones. Material y méto-
dos. Se desarrolló un modelo autorregresivo para evaluar la 
influencia de factores climáticos (temperatura superficial del 
mar) y tiempo (temperatura máxima, temperatura mínima y 
precipitación) sobre la incidencia de dengue, a lo largo de 11 
años (1995-2005), empleando análisis de series de tiempo. 
Resultados. La incidencia de casos de dengue aumentó 
2.6% una semana después de cada 1ºC de incremento en 
la temperatura máxima semanal (95% IC: 0.2, 5.1); obser-
vamos también que los casos de dengue aumentaron 1.9% 
dos semanas después de cada centímetro de incremento 
en la precipitación semanal (95% IC: -0.1, 3.9). Cada 1ºC de 
aumento en la temperatura superficial del mar en la región 
Niño 3.4 fue seguida, 18 semanas después, de un aumento 
de 19.4% en la incidencia de casos de dengue (95% IC: -4.7, 
43.5). Conclusiones. Los factores de clima y tiempo tienen 
una influencia menor, aunque significativa, sobre la transmisión 
del dengue en la ciudad fronteriza de Matamoros, México. 
Este estudio aporta información basal para identificar efectos 
potenciales de mayor alcance, relacionados con el cambio 
climático global sobre los casos esperados de dengue en las 
próximas décadas. Hasta donde sabemos, este es el primer 
estudio que evalúa las posibles asociaciones entre los eventos 
climáticos y tiempos y la incidencia de casos de dengue en la 
frontera de México con Texas.
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Among the most significant anticipated health im-
pacts of climate change is an increased incidence 

of mosquito-borne infectious diseases including dengue 
and malaria.1-3 Dengue is the most serious and prevalent 
arboviral disease in the world today; two and a half bil-
lion people living in the tropics and subtropics are at risk 
for epidemic transmission. There are an estimated 50-100 
million cases of dengue fever each year,4 although this 
is probably an underestimate of the true incidence as 
many cases likely go unreported because the symptoms 
of dengue are similar to the flu. 
 At present, dengue and dengue hemorrhagic fever 
(DHF), a potentially fatal form of dengue, are largely 
diseases of the tropics; however, many studies project 
their expansion with global warming.1,2,5-8 Other studies 
predict limited or no increase in mosquito-borne disease 
transmission with global warming.9,10 There is a grow-
ing scientific consensus that humans are affecting the 
global climate system, primarily by the burning of fossil 
fuels for energy generation, transportation, mechanized 
agriculture, and other economic activities. The third 
assessment report by the Intergovernmental Panel on 
Climate Change (IPCC) projects an increase in global 
average temperature of between 1.4°C and 5.8°C by 
2100.11 Other projected climatic changes include a global 
average increase in both atmospheric water vapor con-
tent and precipitation, and an increase in the frequency 
and magnitude of extreme weather events.11,12

 The primary human health consequences associated 
with climate change are increased mortality related to 
extreme weather events; an increase in deaths resulting 
from heat waves; and an increased incidence of vector-
borne diseases, particularly malaria, dengue and the 
viral encephalitides.1,2,13 Increased temperatures directly 
affect the spread of vector-borne diseases in three critical 
ways: by expanding the geographic range of the vector, 
by decreasing the extrinsic incubation period (EIP) of 
the pathogen (the time required for the virus to replicate 
inside the mosquito and become infectious to another 
human), and by increasing the contact rate (the biting 
rate of female mosquitoes). Climate change is projected 
to expand the latitudinal and altitudinal range of dengue 
as well as extend its transmission duration in both the 
tropics and the temperate zones bordering areas where 
dengue is currently endemic .1,2,5-7,14,15

 Probably the most critical effect of climate change 
on dengue transmission will be the reduction in the 
EIP of the virus. For example, Watts et al. found that the 
EIP for dengue-2 was 12 days at 30°C but only 7 days at 
32°C to 35°C.16 A related study showed that a five-day 
decrease in the EIP for dengue translated to a potential 
three-fold increase in dengue transmission.17 A shorter 

incubation time for the disease-causing agent is a critical 
factor in epidemic potential because it greatly increases 
the likelihood that a mosquito will live long enough to 
become infectious and bite a susceptible human, thus 
continuing the dengue transmission cycle. 
 Elevated temperatures increase the contact or bit-
ing rate of mosquitoes in several ways. First, warmer 
temperatures reduce the larval size of Aedes mosqui-
toes, resulting in smaller adults that must feed more 
often to develop their egg batch.18 Additionally, adult 
mosquitoes digest blood more quickly at higher tem-
peratures and therefore need to obtain bloodmeals more 
frequently.19

 Precipitation variability and more extreme weather 
events may also increase mosquito-borne disease in-
cidence.3 Areas that receive increased precipitation or 
experience an increase in the frequency or magnitude 
of extreme weather events will likely experience an ex-
pansion of vector breeding sites and larval habitat.20 El 
Niño events represent the best analog for the impacts of 
increased frequency of extreme weather events. A num-
ber of studies have documented an increased incidence 
of malaria associated with El Niño events,20-25 but evi-
dence for dengue-ENSO (El Niño Southern Oscillation) 
associations is equivocal.26 Extreme weather events are 
also likely to facilitate the spread of dengue by disrupt-
ing water supply, sewerage and sanitation services. The 
interruption of basic public health and safety measures 
that frequently follow such events provides an ideal 
environment for the vector while leaving humans vul-
nerable to an increased rate of mosquito biting.27,28

 Regional studies are needed to explore the potential 
links between climatic variables and disease emergence.3 
While several studies have looked at links between cli-
matic variables, ENSO, and dengue,29-31 very few have 
examined these associations in Latin America. To our 
knowledge, this is the first study to investigate the po-
tential associations between climate and weather events 
and dengue incidence on the Texas-Mexico border. 

Study objectives

The goal of this study was to assess linkages between 
microclimate and longer-term ENSO-related weather 
forcing on the week-to-week changes in dengue preva-
lence in a restricted geographic area over a single recent 
decade of dengue observations. This study does not 
address the issue of climate change effect on dengue 
incidence, per se. Such studies here and in many other 
areas will provide baseline information for identifying 
potential longer-term effects of global climate change 
on dengue expected in the coming decades. 
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Material and Methods
Data 

An auto-regressive model was developed to evaluate 
the role of climatic factors on dengue incidence over an 
eleven year period (1995-2005). We compiled daily data 
for maximum temperature, minimum temperature, and 
precipitation from the most reliable weather station in 
the region, the Brownsville South Padre, Texas airport 
(WMO# 722500; latitude/longitude: 25(deg) 54’ 28.17” 
N, 97(deg) 25’ 29.61” W ; elevation +000 m.a.s.l.). Climate 
data for the eleven-year series were obtained from the 
National Climatic Data Center (NCDC).* From 4 017 
daily observations at the Brownsville airport weather 
station, there were a total of 129 missing values in the 
NCDC database (14 for maximum temperature, 15 for 
minimum temperature, and 100 for precipitation). The 
missing values were obtained from the same weather 
station using a different database, the National Weather 
Service database.‡ Weekly sea surface temperatures were 
obtained from the National Oceanic and Atmospheric 
Administration (NOAA) for Niño 3.4 region (120-170W, 
5S-5N)§ and used as an ENSO indicator. 
 For dengue data, we used weekly incidence data 
from the city of Matamoros, Tamaulipas, Mexico# 
because it is the most reliable and thorough dataset in 
the region. Daily data were transformed into maximum 
and minimum weekly temperatures and total accumu-
lated weekly precipitation amounts to correspond with 
weekly epidemiological dengue reporting (Sunday 
through Saturday), a reporting system standardized 
across the western hemisphere by the Pan American 
Health Organization. All dengue case reports (table 
I) were serologically confirmed at the state lab (Labo-
ratorio Estatal de Salud Pública) in Ciudad Victoria, 
Tamaulipas, Mexico. 

Statistical methods

To measure the effect of temperature, precipitation, 
and ENSO cycle on dengue incidence using standard 
regression procedures, serial correlation in the dengue 
time series must first be removed. We added one case to 
each weekly dengue count and natural log-transformed 

the series to stabilize variance. We then determined 
lack of temporal trend with the Dickey-Fuller unit root 
test.32 Serial correlation was diagnosed with autocor-
relation and partial autocorrelation functions, and then 
empirically reduced by successive additions of lagged 
autoregressive terms to the series. The process was 
terminated when the portmanteau test33 and Bartlett’s 
white noise test34 indicated no significant autocorrela-
tion among residuals. Using cross-correlation functions, 
we tested the residuals of the autoregressive series 
with each weather variable at biologically-plausible 
time lags to determine optimal time lags maximizing 
cross-correlations.The autoregressive terms and lagged 
weather variables were entered into an ARMAX model 
to calculate variable coefficients and standard errors, 
and generate model residuals and predictions. ARMAX 
models are linear regressions (X) with the error term 
specified with autoregressive (AR) and/or moving av-
erage (MA) terms. We used only autoregressive terms 
without moving average terms. Diagnostics indicated 
residual heteroscedasticity and the ARMAX model was 
rerun using standard error estimation that was robust 
to departure from homoscedasticity. Residuals were 
symmetrically distributed about a mean of zero.
 We tested two models with identical covariate and 
ARMA structures [AR(2) MA(0)], one using the full 
11-year data set, the other using only the first 10 years 
of data for estimation. We compared predictions with 
observations of the 11th year of data using both models 
as a model validation procedure. Data management 
and statistical procedures were performed with Stata 
9.1 (StataCorp, College Station, TX).

Results
From 1995-2005, there were 2 865 reported cases of 
dengue and 43 reported cases of dengue hemorrhagic 
fever in Matamoros, Tamaulipas, Mexico.* The highest 
dengue incidence occurred in 1997, followed by 2005 
(table I). 
 Time series were plotted for all climatic variables 
and dengue incidence to observe their behavior and pat-
terns of seasonal and inter-annual variability (figures 
1-4). Using the full eleven-year dataset (1995-2005), our 
ARMAX model (table II) showed that dengue incidence 
increased by 2.6% (95% CI: 0.2-5.1) one week after 
every 1ºC increase in weekly maximum temperature 
and increased 1.9% (95% CI: -0.1-3.9) two weeks after 

* Available from: http://climvis.ncdc.noaa.gov/cgi-bin/gsod_xmgr
‡ Available from: http://www.srh.noaa.gov/bro/
§ Available from: http://www.cpc.noaa.gov/data/indices/wksst.for
# Secretaría de Salud, Tamaulipas, Mexico, unpublished data. * Secretaría de Salud, Tamaulipas, Mexico, unpublished data.
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Table I

REPORTED DENGUE AND DHF INCIDENCE

IN MATAMOROS (1995-2005)

Year Dengue DHF Total dengue

1995 319 0 319

1996 373 19 392

1997 815 10 825

1998 178 5 183

1999 406 0 406

2000 161 2 163

2001 8 0 8

2002 100 4 104

2003 3 2 5

2004 28 1 29

2005 474 * 474‡

* Data are not available for number of hemorrhagic cases in 2005
‡ Incidence data for 2005 represents only those cases that were labora-

tory-confirmed. Several thousand additional probable cases were reported, 
including several hundred cases of dengue hemorrhagic fever, but blood 
samples were not collected (Secretaría de Salud, Tamaulipas, Mexico, 
unpublished data)

FIGURE 1. TIME SERIES OF DENGUE AND SEA SURFACE TEM-
PERATURE (ºC)

FIGURE 2: TIME SERIES OF DENGUE AND MAXIMUM TEMPERA-
TURE (ºC)

FIGURE 3: TIME SERIES OF DENGUE AND MINIMUM TEMPERA-
TURE (ºC)
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every 1 cm increase in weekly precipitation. Every 1ºC 
increase in sea surface temperatures in the equatorial 
Pacific, Nino region 3.4 was associated with a 19.4% 
(95% CI: -4.7-43.5) increase in dengue incidence 18 
weeks later. Minimum temperature was not signifi-

cantly associated with dengue incidence (p=0.26) and 
was dropped from the model. 
 We validated the basic model by re-estimation 
using data from the first 10 years, 1995 through 2004 
(table III and figure 5), to predict dengue incidence 
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FIGURE 4. TIME SERIES OF DENGUE AND PRECIPITATION (CM)

Table II

ARMAX MODEL FOR TIME SERIES 1995-2005

Ln(dengue) Coef. z-statistic p-value 95% Conf. Interval

Max temp ºC L1* .026 2.11 0.035 .002,   .051

Precip (cm.) L2* .019 1.88 0.060 -.001,   .039

Sea surface temp L18* .194 1.58 0.114 -.047,   .435

    

AR(L1)* .532 7.28 0.000 .389,   .675

AR(L2)* .359 5.04 0.000 .219,   .498

Wald Chi square(5) = 1027.2, p<0.0001, n=574
L* = number of weeks lag

Table III

ARMAX MODEL FOR TIME SERIES 1995-2004

Ln(dengue) Coef. z-statistic p-value 95% Conf. Interval

Max temp ºC L1* .025 1.83 0.068 -.002,   .052

Precip (cm.) L2* .020 1.93 0.053 -.000,   .041

Sea surface temp L18* .141 1.14 0.255 -.101,   .382

    

AR(1)* .545 6.91 0.000 .390,   .700

AR(2)* .335 4.35 0.000 .184,   .486

Wald Chi square(5) = 748.2, p<0.0001, n=522
L*= number of weeks lag

in the eleventh year, 2005 (figure 6). Coefficients did 
not change significantly between the model estimated 
with all eleven years and the ten-year model. The pre-
dictions in figures 5 and 6 used both the endogenous 
(the autoregressive variables) and the exogenous (the 
climate variables) components of the model. Finally 
we plotted the predictions of the model based on the 
entire series, 1995-2005 (figure 7), and compared them 
with the model predictions from the ten-year series, 
1995-2004 (figure 6).
 There is very little difference between the within 
(2004) and out-of-series (2005) model predictions as most 

of the predictive power comes from the autoregressive 
terms, whose coefficients are not significantly different 
in the two models. Despite the strong influence of the 
autoregressive components in the model, adding the 
three climate variables resulted in significant improve-
ment in model fit (Chi-squared(3)=11.12, p=0.011) using 
the full 11-year model.

Discussion
Based on this time series analysis, weather and cli-
matic factors together play a significant but small role 
in dengue transmission in the border city of Matamoros, 
Mexico. The predictive ability of our models (table II 

FIGURE 5. ESTIMATION MODEL (1995-2004)

N
um

be
r 

of
 d

en
gu

e 
ca

se
s

Observed dengue cases

Predicted dengue cases

        1994         1996        1998        2000        2002        2004       2006
Year

15

10

5

0

Pr
ec

ip
ita

tio
n 

cm

N
at

ur
al

 lo
g 

de
ng

ue
 c

as
es

        1994       1996      1998       2000       2002       2004       2006
Year

* Data are in epidemiological weeks, Sunday through Saturday, with each 
year beginning at week 1

30

20

10

0

5

0

Precipitación cm
In (dengue cases)



ARTÍCULO ORIGINAL

232 salud pública de méxico / vol. 50, no. 3, mayo-junio de 2008

Brunkard JM y col.

region. Time series modeling is inherently data-driven. 
Though the autoregressive order determinations and 
the specific lagged independent variables were selected 
to optimally condition the series within biological and 
physical bounds, it is likely that the lags for the vari-
ables described here are place-specific and will vary 
somewhat in locales with other weather conditions and 
climatic patterns. 
 We can conclude, however, that endogenous 
predictive power in the dengue case series does not 
extend beyond two weeks in Matamoros. Year-to-year 
variability in dengue seroprevalence is likely a function 
of herd immunity and the presence of specific dengue 
serotypes and strains,35 not measured here. Other stud-
ies investigating the relative role of climatic factors on 
mosquito-borne disease incidence have similarly found 
that endogenous factors dominate.36,37

 Our objectives were to determine if the ENSO cli-
mate indicator and weather variables played some role 
in weekly dengue cases. The autoregressive terms in 
our models were only used to condition the time series 
of dengue cases so that we could apply the techniques 
of ordinary least squares regression to test the effect of 
the climate indicator and weather variables in weekly 
dengue cases. The addition of maximum temperature, 
precipitation, and sea surface temperature significantly 
improved model fit to the data (p=0.011).
 Our findings with respect to temperature, pre-
cipitation and sea surface temperature are in general 
agreement with the findings of Hurtado-Díaz et al.38 
who constructed a similar model to study the climate-
dengue relationship in the state of Veracruz, Mexico. 
SSTs were highest in 1997, coinciding with the highest 
year of reported dengue incidence in Matamoros and 
in Veracruz, and Hurtado-Díaz et al.38 detected a small 
influence of precipitation and minimum temperature. 
In the Texas-Mexico border region, maximum tempera-
ture is more influential than minimum temperature for 
dengue transmission because its fluctuations cross non-
linear thresholds for key biological processes, such as the 
dramatic reduction in the extrinsic incubation period of 
the virus at 32ºC.16 As in our model, other studies have 
found that predictive models under-estimate actual 
cases of mosquito-borne disease, especially in high 
incidence years.39

 Under-reporting of disease incidence is a serious 
and widespread limitation to modeling climate-disease 
relationships. Our response variable is almost certainly 
an underestimate of regional dengue incidence. Even 
accounting for improved reporting on the Mexican 
side of the border, we are confident that dengue cases 
are higher than official incidence reports. For example, 
a serosurvey in 2004 found that 7.7% of Matamoros 

FIGURE 6. OUT OF SERIES (1995-2004) MODEL PREDICTION 
FOR 2005

FIGURE 7. WITHIN SERIES (1995-2005) MODEL PREDICTION 
FOR 2005
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not further specify without more information on the full 
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residents had experienced a recent (within 2004) dengue 
infection.40 But official statistics place 2004 as one of the 
lowest years of dengue incidence in the series (table 
I). A dengue serosurvey in El Salvador found similar 
pervasive under-reporting.41 Lopez-Correa et al. (1979) 
calculated that there were at least 46 undiagnosed den-
gue cases for every reported case from their survey in 
Puerto Rico.42 The times series of dengue and precipi-
tation co-variance (figure 4) seems to suggest that 2004 
should have been a high incidence year, as it was, but 
cases were not registered and therefore were not factored 
into our model. We suspect that the observed influence 
of precipitation on dengue incidence in our models 
would have been much stronger if dengue incidence 
had not been under-reported.
 Current evidence suggests that non-climatic fac-
tors play the biggest role in mosquito-borne disease 
incidence.43,44 However, completely discounting the 
role of climate in disease emergence is premature;45 we 
need better models and more reliable data. In this region 
of the US-Mexico border, residents and public health 
officials intuitively know that climate plays a role in 
dengue transmission. For example, when one resident 
was asked if she knew how dengue was transmitted, 
her response was: “I don’t know. The mosquito, I think. 
All of a sudden the rain comes and the dengue is here.” 
Another survey participant commented, “It’s warm all 
the time here, and the mosquitoes don’t die off here.” 
And when asked how often the city sprayed for mos-
quitoes, one resident observed: “during the summer, 
yes–but sometimes we have mosquitoes during the 
winter too.” Local public health officials likewise com-
mented that with the onset of the rainy season and high 
temperatures, they were likely to see dengue cases.* 
 Development of active surveillance for mosquito-
borne diseases and Early Warning Systems (EWS) are 
key public health goals46 but integrating climate data 
into predictive frameworks for infectious diseases has 
not yet been achieved.3 However, advances in this 
area are being made. A recent retrospective analysis of 
malaria prevalence in Botswana, Africa demonstrated 
that multiple models using ENSO indicators provide a 
five-month lead time on disease prediction whereas data 
on precipitation alone only gives a one-month lead,47 
lag times similar to those described in this study. Such 
findings show promise, but institutional support for 
integration of climate data into EWS is not yet present 
in this region.
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