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Abstract
Helicobacter pylori has acquired great importance during the
last two decades, after being recognized as an important
pathogen that infects a great portion of the human popula-
tion. This microorganism is recognized as the main causal
agent of chronic gastritis and duodenal ulcers, and it is as-
sociated with the subsequent development of gastric carci-
noma. The pathogenic mechanisms of H. pylori and their
relation to gastric ailments have not been clearly defined.
However, at present it is well established that urease, vacu-
olating cytotoxin VacA, and the pathogenicity island (cag
PAI) gene products, are the main factors of virulence of this
organism. Thus, individuals infected with strains that ex-
press these virulence factors probably develop a severe lo-
cal inflammation that may induce the development of peptic
ulcer and gastric cancer. The way the infection spreads
throughout the world suggests the possibility that there are
multiple pathways of transmission. Due to the importance
that H. pylori has acquired as a human pathogen, laborato-
ries worldwide are attempting to develop a vaccine that
confers long-term immunological protection against infec-
tion by this microorganism.  Hence, the objective of this
review is to present the most relevant findings of the biolo-
gy of H. Pylori and its interaction with the human host. The
full version of this paper is available too at: http://
www.insp.mx/salud/index.html
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Resumen
Helicobacter pylori ha adquirido gran importancia durante
las últimas dos décadas, al ser reconocido como un impor-
tante patógeno que infecta una gran porción de la población
humana. Este microrganismo es reconocido como el princi-
pal agente que causa la gastritis crónica y la úlcera duode-
nal, además de que se ha asociado con el subsecuente
desarrollo del carcinoma gástrico. Los mecanismos patogé-
nicos de H. pylori y su relación con los padecimientos gás-
tricos no se han definido en forma clara. Sin embargo,
actualmente está bien establecido que la ureasa, la citotoxi-
na vacuolizante VacA y los productos de los  genes de la isla
de patogenicidad (cag PAI) son los principales factores de
virulencia de este organismo. Así, los individuos infectados
con cepas que expresan dichos factores de virulencia, pro-
bablemente manifiesten una marcada inflamación local que
podría inducir el desarrollo de úlcera péptica y cáncer gástri-
co. La manera como la infección se propaga a nivel mundial
sugiere la posibilidad de múltiples vías de transmisión. A
consecuencia de la importancia que H. pylori ha adquirido
como patógeno humano, los laboratorios del mundo se es-
fuerzan para desarrollar una vacuna que confiera protec-
ción inmunológica de larga duración contra la infección por
este microorganismo. El objetivo de esta revisión es pre-
sentar los hallazgos más relevantes sobre la biología de H.
pylori y su interacción con su huésped humano. El texto
completo de este artículo también está disponible en: http:/
/www.insp.mx/salud/index.html
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Helicobacter pylori was probably already established
in the human stomach at least 100 000 years be-

fore the beginning of the human exodus from Africa
and thereafter it followed humans as an unknown
pathologic agent.1 However, in 1982 this bacterium was
removed from the group of the unrecognized etiologic
agents when it was discovered and isolated through
accidental extended incubation of pure culture from
human gastric mucosa biopsies.2,3 These events and
subsequent studies of its genome sequence, physio-
logy, adaptation to a restricted ecological niche, and
possible antigenic variation mechanisms, have
changed radically the gastroenterology and micro-
biology knowledge. H. pylori is a microaerophilic,
Gram-negative, slow-growing, spiral-shaped, and
flagellated bacteria. To date, H. pylori is a well-recog-
nized pathogen that chronically infects the stomachs
of up to 50% of the world’s human population, and
that has been associated with serious diseases with sig-
nificant morbidity and mortality.

Association between H. pylori infection
and disease

As with most infectious diseases, Helicobacter associat-
ed gastritic disease is influenced not only by the na-
ture of the infecting strain but also by the host and
environmental factors. H. pylori infection is confined
to the gastric mucosa, where it stimulates a marked
local inflammation and a systemic immune response.4

Over the long term, susceptible individuals are at risk
of developing complications. Gastric inflammation
leads to atrophy and metaplasia, conditions strongly
associated with stomach cancer.5

Since H. pylori research has developed rapidly, it
is now possible to establish a conclusive link between
H. pylori and different forms of gastroduodenal abnor-
malities.6 Experiments using human volunteers and
animal models have substantiated the strong direct
relationship between H. pylori and gastritis. Two well-
described studies of self-inoculation with consistent
temporality have been performed.7-9 Although none of
the experiments using humans volunteers have linked
H. pylori infection with peptic ulcer disease of the stom-
ach and duodenum, several laboratories have provid-
ed a mass of strong circumstantial evidence.10, 11

Similarly, other studies have established a strong rela-
tionship between H. pylori infection and gastric aden-
ocarcinoma, although the nature of the relationship is
still controversial.12-15 Moreover, there is a strong asso-
ciation between H. pylori infection and low-grade gas-
tric lymphoma arising from mucosa-associated

lymphoid tissue.16 H. pylori infection also has been as-
sociated with dyspepsia and non-ulcer dyspepsia, al-
though this association is still unresolved.17 Taken all
together, H. pylori infection in humans represents a se-
rious public health concern. Each year, there are at least
7 million patients around the world who are affected
by these diseases, leading to hundreds of thousands
of deaths.18 The World Health Organization classifies
this bacterium as a Type 1 carcinogen.19

Although H. pylori infection is minimally invasive,
metaplastic gastric tissue may also spread to other parts
of the alimentary tract such as the duodenum,20 the
proximal esophagus,21 the distal esophagus,22 Meck-
el’s diverticulum,23 and the rectum.24 In addition, it has
been proposed that although H. pylori infection is cir-
cumscribed to the gastric mucosa, it could conceiva-
bly produce lesions remote to the primary site of
infection, by altering levels of systemic inflammatory
mediators.25 Several non-gastrointestinal tract diseas-
es associated with H. pylori infection include diabetes
mellitus, thyroiditis, heart diseases, rheumatoid arthri-
tis, dermatological disorders, hepatic encephalopathy,
childhood anemia and several more. Nevertheless, the
hypotheses that have linked H. pylori infection to this
variety of non-gastrointestinal tract diseases have not
yet been fully substantiated.26,27

Although H. pylori infection may cause other
diseases in addition to gastritis, there are no clinical
consequences whatsoever in 60 to 70% of infected hu-
mans. This suggests that H. pylori-associated disease
is influenced not only by the pathogenic nature of
the infecting strain but also by other factors. Genetic
variability in host factors such as gender,28,29 blood
group antigens,30 human lymphocyte antigen type,
and the age of the host when the infection was ac-
quired, may play a primary role in determining dif-
ferent clinical outcomes.31

Environmental factors may also play a role in the
outcome of the infection. Socioeconomic class, which
affects living conditions and sanitation, may increase
the risk of exposure to the bacterium.32,33 Tobacco
smoking increases the risk of duodenal ulceration for
patients infected with H. pylori.34 All these environmen-
tal determinants may undergo synergistic or antago-
nistic interactions with H. pylori to render different
clinical outcomes of infection. Similarly, dietary fac-
tors including high salt and low antioxidant intake are
risk factors for gastric carcinoma in and of them-
selves.35-37 However, a vegetable and fruit diet exerts a
protective influence against this disease.38

Therefore, not everyone infected with pathogenic
strains is expected to develop this condition.

H
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Epidemiological features of the infection

Although H. pylori infection is chronic and endemic, it
has distinct epidemiological features.39 The prevalence
of the infection can vary widely between and within
population groups. The prevalence of infection in third
world countries seems to be nearly universal, begin-
ning in early childhood and increasing with advanc-
ing age. Most children are infected in the first few
months of life. By the age of five, as many as 50% are
already infected, and by the age of 40, 90% are infect-
ed.40 Prevalence rates are lower in developing coun-
tries with better industrialization, public health, and
living conditions. Nevertheless, the rate is still several
times higher than that found in developed countries,
where the incidence of H. pylori infection is found in
approximately 30% of the adult population.1

H. pylori incidence has become less frequent in
developed countries over recent years, which reflects
a so-called cohort effect. The rate of decline may be as
high as 26% per decade,41 and only 0.4% of uninfected
adults acquire H. pylori each year.18 In children, how-
ever, the incidence may be higher, which is consistent
with the notion that H. pylori infection is predominantly
acquired in childhood. Nevertheless, even in children,
the prevalence of infection seems to be diminishing
over time. This is a worldwide phenomenon that is like-
ly due to improvements in nutrition, drinking water,
and introduction of antibiotics. Moreover, declining
family size reduces the opportunity for transmission
and increases the age of acquisition.

To date, almost all epidemiological studies have
shown an inverse relationship between H. pylori infec-
tion and socioeconomic status.32 In the United States,
non-Hispanic whites exhibit lower prevalence of infec-
tion than do African-Americans and Hispanics.26,42,43

Variations in H. pylori prevalence between different
racial and ethnic groups have also been observed in
other countries, such as Taiwan and Belgium.44,45 Al-
though the reasons for these differences are not well
understood, socioeconomic status during childhood is
thought to play a significant role.18 A genetic predis-
position to infection is also feasible. Studies of
monozygotic and dizygotic twins show that genetic
effects influence the acquisition of H. pylori due to great
similarities within the monozygotic pairs.46 In addition,
men consistently have a higher prevalence rate than
that of women across all strata of race/ethnicity, age,
education, and income.26,47,48

Exactly how the organism is transmitted from the
stomach of one person to that of another remains un-
clear. The most accepted hypothesis is that the organ-
ism is transmitted through close personal contact and

that the human being is the only significant reservoir
of infection.49 The detection of the bacterium in saliva,
dental plaque, diarrheal stools, and vomit implicates
oral-oral or fecal-oral transmission as possible
routes of infection. Contaminated water and raw veg-
etables could be a source of H. pylori in the fecal-oral
transmission pathway.50 Iatrogenic spread, through the
use of improperly cleaned endoscopic equipment, has
also been proposed as a possible route of infection.51

There is also the possibility of zoonotic transmission
because H. pylori has also been found in some domes-
tic animals who have close human contact, such as cats,
but at present, the risk of infection from them appears
insignificant.52 Nevertheless, the demographic, envi-
ronmental and zoonotic factors may play a role in the
spread of H. pylori around of the world.

Relevance of strain types of H. pylori in
the outcome of infection

Virulence is concept intimately linked to disease and
is usually measured in terms of morbidity and mor-
tality. Survival and multiplication are clearly the
microbe’s priorities, while disease is simply a mani-
festation of the complex interactions required to accom-
plish these goals. Thus, virulence determinants include
all the factors contributing to the evolutionary success
of the parasite, as well as to the development of the
disease in the host. There are many virulence factors
of H. pylori that contribute in dissimilar ways to gas-
tric mucosal damage; among them are factors known
to be required for the colonization and survival of H.
pylori in the human stomach. These factors are urease
and flagella that are expressed by all Helicobacter spe-
cies. H. pylori manufactures large amounts of urease
that helps to break down urea into carbon dioxide and
ammonium, which neutralizes the acid during coloni-
zation of the stomach. The protection of H. pylori by
this enzyme also induces apoptosis of gastric cells in
vitro and inhibits gastric somatostatin release in ani-
mals, which could have consequences for the physiol-
ogy of digestion in general.53 Flagellar motility of
Helicobacter species has been shown to be essential
for successful colonization of the host. Flagella allow
the bacterium to swim across the viscous gastric mu-
cus and reach the more neutral pH underneath the
mucus. This property also enables the bacterium to
resist the muscular contractions that regularly empty
the stomach.  Mutants of the urease54 or flagellar
structure genes55 are defective in colonization in ani-
mal models of infection.

In analogy with other enteropathogens, the adhe-
sion to the intestinal epithelium is a critical initial step
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in enteric colonization. The adhesion process of cer-
tain strains of H. pylori can stimulate pedestal for-
mation and develop attaching-effacing lesions, similar
to those produced by a special class of enterovirulent
Escherichia coli cells.56 It has been shown that several
putative adhesins mediate the attachment of H. pylori
to gastric epithelial cells.57-59 This suggests that this bac-
terium could use several adherence mechanisms to
establish contact with the surface of the epithelial cells.
Nevertheless, despite the importance of the adhesins
in colonization and virulence, they have not been prov-
en to be essential for in vivo survival of H. pylori.60

H. pylori lipopolysaccharide (LPS) has also been
implicated in another aspect of the pathogenesis of H.
pylori infection. LPS is a family of toxic phosphorylat-
ed glycolipids in the outer membrane of Gram-nega-
tive bacteria and is composed of a lipid moiety
(termed lipid A), a core oligosaccharide, and a poly-
meric O-specific polysaccharide chain.61 Although, H.
pylori LPS shares certain biological properties with LPS
of other intestinal bacteria, generally it possesses
lower immunological activity. H. pylori LPS is able to
induce toxic lethality in animal models62  and the se-
cretion of cytokines by human monocytes.63,64 Howev-
er, this induction is weaker than that of other tested
bacterial LPS. This lower immunological activity of H.
pylori LPS is probably a result of its unusual acylation
and phosphorylation pattern of lipid A.63

H. pylori LPS may have an important role in au-
toimmune-mediated damage in the gastric mucosa.
The structure of the LPS O-specific chain in different
H. pylori strains may mimic Lewis blood group anti-
gens in structure. As these antigens are present in the
normal human gastric mucosa, the expression of
Lewis antigens on the bacterial surface may camou-
flage the bacterium and may contribute to its survival
in the stomach.61 Alternatively, during infection, high-
ly conserved immunogenic molecules expressed by
infectious pathogens may act as a trigger for the in-
duction of humoral and cellular immune responses that
cross-react with host cellular antigens in a mechanism
known as antigenic mimicry.65 Antibodies against H.
pylori Lewis antigens have been found to cross-react
with various components of the gastric mucosa. The
gastric H+, K+-ATPase is a major autoantigen in H. py-
lori-associated antigastric autoimmunity.66 Anti-LewisY

antibodies induced by H. pylori against LewisY epitopes
of the beta chain of this proton pump involved in acid
secretion may promote the development of atrophic
gastritis.65,67

On the other hand, of the molecules that are ac-
tively transported to surrounding tissues, the most
important is the vacuolating toxin (VacA), which is the

major toxin secreted by H. pylori.68 The active cytoto-
xin is produced by approximately 50% of H. pylori
clinical isolates,69 and its presence is associated epide-
miologically with tissue damage and peptic ulcers,70

VacA is initially translated as a 140 kDa protoxin, which
subsequently undergoes both N-terminal and C-ter-
minal processing to yield a 95 kDa mature secreted
monomer. This mature monomer assembles into a
large oligomeric complex with hexameric or heptame-
ric radial symmetry. The mature monomer could be
cleaved proteolytically into two fragments: an N-ter-
minal 34 kDa fragment and a C-terminal 58 kDa
fragment that remain associated after cleavage.71 The
ability to induce vacuoles is localized mostly but not
entirely in the first fragment, whereas the second frag-
ment is mostly involved in cell targeting.

Several mechanisms of VacA toxic activity against
the host cell have been reported. It has been suggested
that this toxin induces the alteration of intracellular
vesicular trafficking in eukaryotic cells, leading to the
formation of large vacuoles containing markers of late
endosomes and lysosomes.72 It also causes a reduction
in transepithelial electrical resistance in polarized mon-
olayers and forms ion channels in lipid bilayers.73

Moreover, it interferes with antigen presentation to the
immune system by impairing processing and matura-
tion of the antigen by the antigen-presenting cell.72,74,75

Finally, Yahiro K and colleagues reported that acidic
and alkaline treatments of VacA protein were associat-
ed with an increase in its biological activity and in its
binding to a 250-kDa receptor protein-tyrosine phos-
phatase β in AZ-521 cells.76

The vacuolating cytotoxin gene A (vacA), which
encodes VacA protein, is present in all H. pylori strains,
but the structure among vacA alleles varies, particular-
ly in two regions.77 One of these regions is the mid-
region of the gene, which may be type m1 (subtype a)
or m2 (subtype a or b). The other variable region of
vacA gene is in the second half of the signal sequence,
which may be type s1 (subtype a, b and c) or s2.78 The
final structure of vacA gene is a mosaic, and all combi-
nations of signal sequence and mid-region types, in-
cluding the rare s2/m1, have been reported.77,79 Thus,
several different families of vacA alleles are present in
H. pylori, and its encoded products are associated with
and without vacuolating activity in vitro.77, 80 Likewise,
H. pylori strains containing certain types of vacA alle-
les have been associated with an increased risk for pep-
tic ulcer disease. Atherton and colleagues showed that
strains with vacA mid-region type m1 are more strong-
ly associated with increased gastric epithelial damage
(epithelial degeneration, mucus depletion, and micro-
scopic erosion) than mid-region type m2. Meanwhile,
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s1a strains are associated with increased mucosal neu-
trophil and lymphocyte infiltration in vivo. These re-
sults suggest that s1a/m1 strains have the most virulent
allelic type activity,77, 80 while vacA s2 strains are rarely
associated with ulcer disease and are uncommon in
many populations.80-84

The link between the ability of a strain to induce
epithelial cell vacuolation in vitro and peptic ulcer dis-
ease in vivo seems to be consistent but not invariable.77

Among strains from populations in the United States,
the ability of vacA s1a strains to induce ulcer disease
was higher than that of vacA s1b strains. Over 90% of
patients with duodenal ulcer disease harbored vacA
s1a strains, while patients with vacA s2 strains were
not more likely to have ulcer disease than uninfected
patients.80 Likewise, in a United Kingdom study pop-
ulation, all patients with ulcer disease had vacA s1
strains, and no vacA s2 strains were associated with
this disease.83 Other studies from Europe also indicate
a strong correlation between the vacA s1 genotype and
peptic ulceration.85-87

However, this correlation is not as evident in the
Far East as it is in the West. Recent studies show that
most H. pylori strains in Japan have an s1a/m1 geno-
type. However, regardless of the vacA genotype, the
infection leads to peptic ulcer or gastric cancer in only
a small subset of infected patients. Thus, these H. py-
lori vacA genotypes cannot be used in a reliable way to
discern the risk of developing serious gastroduodenal
disease in the host.78,82,88

In contrast with East Asian and Western popula-
tions, studies of the South African population have
shown a high prevalence of the vacA s1b strains in pa-
tients with peptic ulceration. No vacA s1a strains were
present, and 100% of patients with peptic ulceration
harbored strains with vacA s1b allele.84 The high prev-
alence of strains with vacA s1b genotype is not con-
fined to South Africa; these strains are also widespread
in Brazil and Portugal, where higher prevalence rates
of peptic ulceration and gastric adenocarcinoma have
been reported.86,89 Additionally, in the South African
population, the vacA s2 allele was found exclusively
in the group of individuals without any pathology,
consistent with observations that vacA s2 strains are
minimally or non-ulcerogenic.80-84 On the other hand,
recent studies of a worldwide collection of strains in-
dicate that subtype s1c was observed exclusively in
isolates from East Asia and appears to be the major s1
allele in that part of the world. Nevertheless, whether
s1c strains are phenotypically different from s1a and
s1b strains remains to be determined.68

In addition to these typical differences between
vacA alleles, there is also considerable variation among

different H. pylori strains with regard to the produc-
tion of vacuolating cytotoxin. Thus, the vacuolating
cytotoxin phenotype of an H. pylori strain is not only
dependent on the amino acid sequence of VacA but
may also be modulated by other strain-specific factors,
such as the level of vacA transcription or the efficien-
cy with which VacA is secreted.90 The considerable var-
iation in these determinants may be relevant to the
occurrence of different clinical outcomes in H. pylori-
infected humans.91

The high molecular weight immunodominant
CagA protein encoded by the cytotoxin associated gene
A (cagA), has long been one of the most intensely in-
vestigated putative virulence factors. However, its
function has not been well understood. Recently,
Odenbreit S. and colleagues reported that CagA is ty-
rosine-phosphorylated and induces changes in the
tyrosine phosphorylation state of distinct proteins in
gastric epithelial cells.92 The cagA gene is present in
about 50-70% of H. pylori strains93 and virtually all of
them produce a detectable local and systemic CagA-
antibody response in the human host. Several studies
have reported that the cagA status is highly associated
with the pathogenicity of H. pylori strains.

These features make it easy to correlate the cagA
phenotype of the infective strains with a particular
gastroduodenal disease by a regular blood test.94 The
clinical isolates of H. pylori have been grouped into two
broad families defined as type I and type II on the ba-
sis of whether they have the entire pathogenicity is-
land (cag PAI), express the CagA protein, and secrete
an active vacuolating cytotoxin VacA.93,95,96 Type I
strains are positive for all these characteristics. In
contrast, type II strains do not express CagA even
though they have the gene, possess the vacA gene
that is silent or encoded for non-toxic but immunore-
active protein, and/or have defective secretion mech-
anisms.77, 97, 98 In addition, only type I strains were able
to elicit secretion of Interleukin 8 (IL-8), which is the
mediator of neutrophil migration by epithelial cells
in vitro.99,100 A number of epidemiological studies have
shown that there is a strong correlation between infec-
tion with type I strains and occurrence of severe gas-
troduodenal diseases, whereas type II strains with
attenuated virulence do not induce dramatic change
in the gastric mucosa.97,101

Thus, H. pylori strains that express CagA cause
more extensive inflammation of the gastric muco-
sa,99,100,102 and infections with these strains have been
reported to be more likely to result in peptic ulcera-
tion,97,98 atrophic gastritis101 and gastric adenocarcino-
ma.102,103 These epidemiological studies are supported
by experiments in animal models, where only the type
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I strains promote gastric damage similar to that ob-
served in humans.71,104

To date, studies have shown that CagA is one of
the proteins produced by the pathogenicity island (cag
PAI). Recent studies using isogenic mutants strains
lacking the cagA gene have shown that IL-8 induction
may not be directly due to CagA protein but to the
products of cag PAI genes.95,105,106,107 cag PAI is a 40 kilo-
base segment of DNA containing over 31 genes insert-
ed into the chromosomal glutamate racemase gene. The
presence in cag PAI of the short repeated sequences
similar to that found in the insertion sequence 605
(IS605), and its different proportion of G+C in com-
parison with the chromosomal DNA, suggests that this
has been acquired by horizontal transfer.

Although cag PAI was acquired by a relatively re-
cent event in evolutionary time, the structure of the
cag PAI is not identical in all strains, which indicates
that this region has gone through a series of rearrange-
ments at different points during evolution. Cesini and
colleagues suggested that after the initial event of in-
tegration of the island,  cag PAI is found as a single
uninterrupted unit in the same relative position on the
chromosome.58,95,108 Subsequently, the interposition by
one copy of the IS605 into its intermediate region has
resulted in rearrangements and deletions within cag
PAI that have led to the rise of H. pylori strains with
varying virulence.95

Analysis of nucleotidic sequence has revealed that
six of the cag PAI genes belong to a growing family of
transporters whose subunits share extensive sequence,
genetic organization, and functional similarities. At
present, this secretion family is referred to as a type IV
secretion system and is present in other bacteria spe-
cies such as Agrobacterium tumefaciens,109 Bordetella per-
tussis,110 E. coli.111 and Brucella suis.112 The type IV
secretion system is devoted to the transfer of a variety
of multimolecular complexes across the bacterial
membrane to the extracellular space or into other cells.
The similarity of the H. pylori cag PAI genes with
components of bacterial secretory pathways suggest-
ed that the expression of H. pylori virulence is triggered
by contact with the host cell. Recently Odenbreit S.
and colleagues provided evidences that the cag PAI
system is involved in CagA secretion.82 In this way, the
bacterial protein CagA is the virulence determinant that
is actively translocated across the membrane of the
gastric epithelial cells.95,107

The gastric epithelium represents the first line of
active defense against H. pylori infection. However,
this tissue not only serves as barrier to exclude path-
ogens but also secrets a number of inflammatory
mediators that initiate the host immune response to

pathogen invasion. In vivo and in vitro studies have
shown that the bacterial infection induces chemok-
ines secretion in gastric epithelial cells, such as IL-8
and GRO-α, MIP-1α, ENA-78, and MCP-1, which have
neutrophil attractant properties. It also induces inflam-
matory cytokines IL-1, IL-6 and TNF-α, which up-reg-
ulate the expression of IL-8 in epithelial cells.67,105,113

This epithelial proinflammatory cytokine/chemokine
response is particularly important because it serves to
amplify and spread the primary pathogenic signal that
leads to a rapid mobilization of phagocytic cells to the
sites of invasion.  Proinflammatory cytokine response
may be protective, but when chronically activated, it
also disrupts the function and the integrity of the gas-
tric epithelium. The infiltration of T-cells and basophils
is activated by IL-8. However, neutrophils appear to
be its major target.99 Activated neutrophils may be help-
ful, but they may also contribute to surface epithelial
layer damage by leakage of potent intracellular en-
zymes and reactive products. Cytokines produced by
infiltrated mononuclear phagocytes within the muco-
sa produce additional stimulation that induces gastric
degeneration.113 Thereby, IL-8 appears to play a key
role in the initiation of the local inflammatory and im-
mune response that may contribute to the more seri-
ous sequels associated with H. pylori infection.

The importance of certain predicted coding re-
gions of the cag PAI in the elicitation of chemokine
response has been evaluated by mutations that sup-
pressed or reduced the induction of IL-8 secretion by
epithelial cells. These studies have shown that isogen-
ic cagA mutants do not affect the expression of VacA
and elicit IL-8 secretion to the same degree as does
the wild-type parent strain.99,114,115 However, mutant
strains with disruption of many other genes in the cag
PAI suppress their ability to stimulate IL-8 produc-
tion.95,106,107,116,117

Censini and colleagues demonstrated that mutants
in cagE, cagG, cagH, cagI, cagL, and cagM genes lost their
ability to induce IL-8 and blocked the tyrosine phos-
phorylation of CagA protein, while cagN mutants were
not affected.95, 116 Knockout of cagE gene affected the
activation of the immediate early response transcrip-
tion factor nuclear factor κB (NF-κB) in a gastric epi-
thelial cell line.118 This protein, which is activated upon
stimulation by a large variety of pathogenic agents, is
present in virtually all cell types and plays an integral
role in regulating the human immune response.119 The
active form of NF-κB is located in the nucleus of the
cell, where it activates transcription of target genes,
including those encoding IL-1, IL-6, IL-8, and TNF-α.118

Glocker E. and colleagues investigated the role of
other cag PAI genes in NF-κB activation.120 They re-
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ported that while two genes (cagF and cagN) are not
required for transcription factor activation, six genes
(cagE, cagG, cagH, cagI, cagL, and cagM) are necessary,
since isogenic H. pylori strains carrying mutations in
these genes no longer induce NF-κB activity. Addition-
ally, Keates S. and colleagues determined that gene
products of the cag pathogenicity island are required
for maximal activation of mitogen-activated protein
kinases (MAPK) in gastric epithelial cells. MAPK reg-
ulate cell proliferation, differentiation, inflammatory
responses, stress, and programmed death, which may
help induce gastroduodenal inflammation, ulceration,
and neoplasia.121 The integrity of whole cag PAI is also
a prerequisite for efficient activation of early transcrip-
tion factor AP-1, which is known for its immunostim-
ulatory function113. Hence, these data support the view
that the epithelial cytokine/chemokine response de-
pends on multiple genes in the cag PAI of H. pylori.

Vaccination development for clinical use
and future of the H. pylori infection

The discovery of H. pylori as the causal agent of vari-
ous gastroduodenal diseases has dramatically changed
the medical approach to this bacterial species. Re-
search on this bacterium’s mechanisms of virulence
has advanced substantially in a period of less than 20
years. The availability of the sequence of the H. pylori
genome and functional characterization of the genes
involved in virulence have considerably increased our
understanding of the molecular genetic basis for the
pathogenesis of H. pylori.96,122 Although the specific
genes involved in virulence are still being determined,
the completed genome sequence should make it easier
to determine the participation of these genes in the
wide spectrum of pathological and clinical outcomes
that follow H. pylori infection. The participation of sev-
eral of these genes has already been confirmed by ge-
netic disruption. It is now well established that urease
and VacA protein are virulence factors of this organ-
ism. The cag PAI genes have also emerged as other well-
confirmed virulence participants.

Effective antibiotic-based therapies for eradicat-
ing H. pylori have been developed in recent years. At
this time, the most proven effective treatment is a 2-
week course of treatment called triple therapy, which
involves the use of two antibiotics and either an acid
suppressor or a stomach lining shield. Two-week tri-
ple therapy kills the bacteria, reduces ulcer symptoms,
and prevents its recurrence in more than 90% of pa-
tients.123 There is, however, an increasing problem of
H. pylori antibiotic resistance. Antibiotics cannot be
used to eradicate the infection from the whole popula-

tion, especially in developing countries where their
indiscriminate use has led to the emergence of H. py-
lori resistant strains.124 It is therefore predictable that
although antibiotics are useful, the long-term conse-
quence of large-scale eradication programs will be a
reduction in the efficacy of antibiotic therapy. Vaccina-
tion, which has long been the most efficient medical
intervention in controlling epidemiological infections,
seems to represent the best alternative. Therefore, the
development of a vaccine against H. pylori that confers
long-term protective immunity is the best strategy to
eradicate chronic H. pylori infection on a global scale
and to avoid the problem of antibiotic resistance.125 This
possibility has been the stimulus for intense research
activity. Further investigation of H. pylori virulence
factors has provided information that is being used
in the development of novel therapies and vaccines to
treat and prevent H. pylori infection.

Although the feasibility of inducing protective
immune response to Helicobacter by vaccination was
initially demonstrated in experimental Helicobacter fe-
lis/murine model,126 the development of a vaccine has
been particularly successful in the more recent H. py-
lori/mouse models that mimics human infection.104, 127

These models have permitted the testing of prophy-
lactic and therapeutic vaccines containing different
antigens, including whole inactivated cells,1 bacterial
lysates,128 and several purified antigens. To date, re-
searchers have identified several H. pylori antigens
which confer protection against H. pylori infection or
in eradicating an already established infection in the
murine models, including purified VacA,104 urease (and
its subunits),129 CagA,130 heat shock proteins (HspA and
HspB),1 and catalase.131 Therapeutic vaccination has
also been successful in ferrets and Rhesus monkeys in-
fected with Helicobacter mustelae and H. pylori, respec-
tively.132, 133

Most of these antigens have been given orally in
combination with mucosal adjuvants, which improve
their low immunoreactivity.127 However, the inher-
ent toxicity of mucosal adjuvants has been the major
limitation for their use as vaccines in humans. An al-
ternative approach to circumvent this problem is the
use of genetically detoxified heat labile enterotoxins
of E. coli LTK63 or non-toxic mutant cholera toxin CT
S61F.125,134, 135 The challenge currently faced by several
laboratories is to discover whether or not the promis-
ing results obtained in the animal model can be repro-
duced in humans.

A major question is how vaccination could be suc-
cessful if H. pylori can survive for the lifetime of its
human host, despite the vigorous immune response
that is mounted against it. Nonetheless, studies in
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progress not only allow investigators to confirm the
feasibility of the vaccination to prevent and/or cure
gastroduodenal diseases, but also to understand how
the host immune response prevents and/or exacer-
bates this H. pylori infection. A large body of evidence
has indicated that the major subset of lymphocytes in-
volved in immunity against invading H. pylori is the
CD4+ T-lymphocytes which are divided into Type 1 T
helper (Th1) and Type 2 T helper (Th2) phenotypes.136

Th1 cells produce a set of cytokines which activate
macrophages and are responsible for cell-mediated
protective responses. In contrast, Th2 cells produce
cytokines, which are responsible for eosinophil acti-
vation, inhibition of several macrophage functions
that provide phagocyte-independent protective re-
sponses, and strong antibody production, particularly
IgA and IgG, which are especially active on mucosal
surfaces.137,138

In the stomach, IL-12 and IL-10 production has
been implicated in the selection of Th1 and Th2 cells,
respectively. The relative predominance of IL-12 in the
human stomach, regardless of whether it is infected or
not, favors the development of a subset of helper T cells
that tend to produce interferon gamma, which is asso-
ciated with Th1 cells and enhanced cell-mediated im-
munity.127 More recently, several laboratories have
shown that biopsies from gastric mucosa of normal,
infected, and uninfected patients, revealed no or
very low levels of mRNA of the classic Th2 cytokine
IL-4.137,138 These studies support the notion that most
infected humans have a Th1 response, which does
not eradicate H. pylori infection. It is therefore predict-
able that a Th2 response would be more effective.

In contrast to natural infection, urease alone is able
to induce relatively more IL-10 in animal models.139

These findings support the notion that vaccines, includ-
ing whole-cell vaccines and native or recombinant
urease or urease subunits, may be effective due to their
ability to alter the selection of T-cell subsets.137 Addi-
tionally, the use of non-toxic LTK63 or CT S61F for oral
vaccination induces a relatively greater Th2 cell re-
sponse that can cure and prevent infection in H. felis/
mice models.128,129,135,139 Thus, with the discovery of the
appropriate formulation and routes of administration,
it is possible that vaccination could trigger an immune
response that differs substantially from that induced
by natural infection with H. pylori. Undoubtedly, the
continuous efforts of laboratories around the world to
develop a vaccine and therapeutic approaches may
soon bring an end to the long evolutionary relation-
ship between humankind and Helicobacter pylori.
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