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Methods to evaluate COVID-19 vaccine effectiveness, with an 
emphasis on quasi-experimental approaches

Abstract  The evaluation of vaccine effectiveness 
is conducted with real-world data. They are es-
sential to monitor the performance of vaccina-
tion programmes over time, and in the context 
of the emergence of new variants.  Until now, the 
effectiveness of COVID-19 vaccines has been as-
sessed based on classic methods, such as cohort 
and test-negative case-control studies, whi-
ch may often not allow for adequate control of 
inherent biases in the assignment of vaccination 
campaigns. The aim of this review was to discuss 
the study designs available to evaluate vaccine 
effectiveness, highlighting quasi-experimental 
studies, which seek to mimic randomized trials, 
by introducing an exogenous component to allo-
cate to treatment, in addition to the advantages, 
limitations, and applicability in the context of 
Brazilian data. The use of quasi-experimen-
tal approaches, such as interrupted time series, 
difference-in-differences, propensity scores, ins-
trumental variables, and regression discontinui-
ty design, are relevant due to the possibility of 
providing more accurate estimates of COVID-19 
vaccine effectiveness. This is especially important 
in scenarios such as the Brazilian, which charac-
terized by the use of various vaccines, with the 
respective numbers and intervals between doses, 
applied to different age groups, and introduced 
at different times during the pandemic.
Key words  Coronavirus, Causal inference, 
Immunization
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Introduction

During development and licensing, vaccines go 
through a series of stages to evaluate their safety 
and efficacy. The use of a new vaccine becomes 
possible following its approval by regulatory 
bodies. The regulatory decisions required to ap-
prove their use in the population focus on the 
balance between the risk and benefit, expressed 
in safety and efficacy measures. However, they 
do not capture all of the information required to 
guarantee their continued use in public health1.  

Efficacy data derives from phase III pre-li-
censing studies, usually randomized clinical tri-
als, and provide the measure of a proportional 
reduction of the risk of infection, or disease, in 
the vaccinated group, compared to one that has 
usually received a placebo. Although randomized 
clinical trials have a strong internal validity, and 
provide robust evidence of the direct biological 
effects of the vaccine on an individual level, they 
cannot be generalized to a population-level vac-
cination programme2. 

From the time when the vaccine starts to be 
used in the population, its effectiveness needs to 
be evaluated from two main objectives: verifying 
if the levels of efficacy registered in the phase 
III studies were maintained in the real world, 
and continuing to monitor its safety, which in-
volves several thousand people and, therefore, 
may enable rare, but severe, events to be con-
firmed. Thus, “efficacy” is usually defined as the 
performance of an intervention in ideal, con-
trolled circumstances, while “effectiveness” refers 
to its performance under conditions of use in the 
real world3. 

In the case of COVID-19, we have a scenario 
in which various highly effective vaccines were 
developed in a short space of time, and have been 
applied to millions of people. On the other hand, 
the virus has been demonstrating the capacity 
to mutate quickly, which has affected some of 
its characteristics, such as transmissibility. The 
possibility of mutations that affect the vaccine`s 
capacity for protection is possible, although this 
has not been significantly documented. A further 
important issue is the duration of the effect of 
the vaccine, i.e., the effectiveness may reduce in 
just a few months4. In addition, there is the fact 
that the various vaccines are technologically dif-
ferent, having varying effects on the immuno-
logical system and, consequently, their efficacy5. 
Lastly, the lack of clear correlates of protection 
for COVID-19 should be highlighted (i.e., usual-
ly measurable antibodies which may serve mark-

ers of individual protection), although if found, 
may be different for specific vaccines.6 These 
immunological correlates of protection enable 
individuals, or the fraction of the population 
which is adequately protected, to be quickly iden-
tified through the use of surveys on population 
samples, with biological sample tests.  In their 
absence, or complementary to these, we have ef-
fectiveness studies, which are population-based 
studies, either purely observational or quasi-ex-
perimental, and aim to estimate the effect of the 
vaccine (effectiveness) during its use in the real 
world.  

In this context, vaccine effectiveness (VE) 
studies should include appropriate methods to 
mimic the process of allocating intervention, 
seeking the most adequate balance between those 
who did, or did not, receive the intervention. The 
methods may be adaptations of classic observa-
tional studies (i.e., time-series, case-control and 
cohorts), or those called quasi-experimental. The 
quasi-experimental methods, also called `natural 
experiments`, are resources which are less used 
and disseminated, but that have a great potential 
of providing adequate and efficient solutions to 
solve the problem of imbalance on allocating the 
intervention among treated and control groups, 
and producing valid VE estimates.

Therefore, this manuscript has the aim of 
providing an overview of the methods used 
when assessing VE, with a greater emphasis on 
quasi-experimental studies. Also, we aim to em-
phazise the ecosystem of existing and accessible 
epidemiological data, to discuss the potential and 
limitations for conducting VE studies in Brazil.

Methods to evaluate vaccine efficacy 
and effectiveness

Halloran et al.3 define four types of effects 
which may be considered in studies to evaluate 
vaccine effectiveness. An examination of these 
effects involves considering not only adminis-
tration of the vaccine to individuals, but also 
the context of vaccination programmes, and the 
different levels of vaccination coverage in popu-
lations in particular. Schematically, considering 
two extreme alternatives, in which in one there 
is a population with a vaccination programme 
under development and, in the other there is no 
vaccination programme at population-level, the 
following effects of the vaccines may be defined:

(1) the direct effect is obtained by comparing 
measures of the occurrence of the disease (e.g., 
incidence of the infection or disease, hospitalisa-
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tion or death) in vaccinated and unvaccinated 
individuals in the same population;

(2) the indirect effect is obtained by compar-
ing measures of the occurrence of the disease in 
those who were unvaccinated in the population 
in which there is a vaccination programme, and 
the unvaccinated, or a population where there is 
no vaccination programme;

(3) In the total effect, occurrence of the 
event among those vaccinated in the population 
in which there is a vaccination programme are 
compared with the incidence in those unvacci-
nated in the population where there is no vacci-
nation programme; and

(4) the overall, or global effect, is estimated 
by comparing measures of the disease occurring 
in populations both with and without a vacci-
nation programme, or, generically, with varying 
levels of vaccination coverage. The overall effect 
examines the impact on the level of the popu-
lation, considering both the direct effect of the 
vaccination on individuals who have been vacci-
nated, and the indirect effects arising from the re-
duction in the levels of community transmission 
due to group immunity (collective or herd) - this 
is a measure of the global benefit of vaccination 
for public health.

Randomized clinical, cohort, and case-con-
trol studies are mainly used to examine the di-
rect effects of a vaccine, while community-based 
intervention, or cluster randomized trials, can 
be used to evaluate the overall, total, or indirect 
effects. More recently, quasi-experimental meth-
ods have been used to evaluate the effects of vac-
cination programmes. They may also be used to 
evaluate indirect and total effects if there is ade-
quate data on the vaccination status of  individ-
uals within a cohort of those eligible for a certain 
programe7. 

Observational epidemiological methods 
and their application in the evaluation 
of COVID-19 vaccine effectiveness

Case-control (test-negative) studies  
In the last twenty years, a modification in the 

traditional case-control study design, called the 
“test-negative case-control” has been widely used 
in observational studies to evaluate the post-li-
censing effectiveness of influenza vaccines8,9. 
More recently, the World Health Organization 
(WHO) proposed application of this study to 
evaluate COVID-19 vaccine effectiveness10. 

In COVID-19 studies, a case is defined as a 
patient who seeks health care and tests positive 

for SARS-CoV-2 infection through a reverse 
transcription polymerase chain reaction (RT-
PCR) and/or antigen test. The control is a patient 
who followed the same case process, but receives 
a negative result for SARS-CoV-2 infection. 
VE is calculated in a similar way to traditional 
case-control studies; in other words, VE = (1 – 
the ratio of chance of vaccination among cases 
and controls) × 100%4,11. 

Ranzani et al.11 conducted a test-negative 
case-control study in the elderly aged  ≥70 from 
the State of São Paulo who received the Coro-
naVac vaccine. Vaccine effectiveness for symp-
tomatic infection, adjusted for age and comor-
bidities, was 18.2% (CI 95% 0.0 to 33.2) and 
41.6% (CI 95% 26.9 to 53.3) in a 0 to 13 and 
≥14 day period, respectively, following the 2nd 
dose11. Hitchings et al. (2021)4 also evaluated the 
effectiveness of the CoronaVac in health profes-
sionals in Manaus, State of Amazonas, Brazil. 
Vaccination with a minimum of one dose pre-
sented effectiveness, adjusted by other variables, 
of 49.6% (CI 95% 11.3 to 71.4) for symptomatic 
SARS-CoV-2 infection in the ≥14 day period fol-
lowing the first dose. However, low effectiveness 
was confirmed (36.8%; CI 95% 54.9 to 74.2) in 
the ≥14 day period following the second dose4. 
In the United Kingdom, Bernal et al.12 evaluat-
ed the effectiveness of Comirnaty and Vaxzevria 
vaccines with a test-negative case-control study. 
The results were similar for both vaccines, with 
over 70% effectiveness for the Alpha, and over 
65% for the Delta variant12. 

Cohort studies
Cohort studies have characteristics similar 

to those of clinical trials, except that they do not 
involve manipulating interventions. The longitu-
dinal structure allows observation of the time se-
quence of events, and outcome exposure, which 
facilitates the causal inference process, and direct 
calculation of incidence and mortality measures.

A prospective cohort study was conducted on 
a national level in Chile to evaluate CoronaVac 
vaccine effectiveness, including approximate-
ly 80% of the population.13 Using an extension 
of the Cox proportional-hazards model, con-
sidering vaccination status as a dependent time 
variable, vaccination effectiveness was estimated, 
associated with partial immunization (≥14 days 
following receipt of the first dose, and before re-
ceiving the second dose), and full immunization 
(≥14 days following receipt of the second dose). 
Among the fully immunized people, the adjusted 
effectiveness of the vaccine was 65.9% for SARS-
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CoV-2 infection, 87.5% for hospitalisation, 
90.3% for ICU admission, and 86.3% for death. 
The results were maintained in the subgroup 
analyses by age, mainly among people of an age 
equal or superior to 6013. 

The SIREN study is based on a prospective 
multicentric cohort of public hospital employ-
ees in the United Kingdom, immunized with the 
BNT162b2 vaccine (Comirnaty)14. Risk factors, 
vaccination status, and symptoms, were regis-
tered at two week intervals, in addition to all of 
the RT-PCR and SARS-CoV-2 antibody test re-
sults. A Poisson mixed-effects proportional haz-
ard model was used to calculate hazard ratios, to 
compare the time to infection in unvaccinated 
and vaccinated participants, and thereby esti-
mate the impact of the vaccine on symptomatic 
and asymptomatic infections. Vaccination cover-
age in the period studied was 89%. Significant-
ly lower coverage was associated with previous 
infection (OR 0.59; CI 95% 0.54-0.64), women 
(OR 0.72, CI 95% 0.63-0.82), those aged under 
35, belonging to minority ethnic groups (espe-
cially black people) (OR 0.26, CI 95% 0.21-0.32), 
porters/security guards (OR 0.61, CI 95% 0.42-
0.90), or midwives (OR 0.74, CI 95% 0.57-0.97), 
and employees living in more vulnerable neigh-
bourhoods (OR 0.75, CI 95% 0.65-0.87)14. Vac-
cine effectiveness was 72% (CI 95% 58-86) 21 
days following the first dose, and 86% (CI 95% 
76-97) seven days after two doses14. 

A prospective cohort study conducted in 
Scotland15, with a hospitalisation and mortal-
ity database of 5.4 million people, estimated 
the effectiveness of the first doses of Pfizer-Bi-
oNTech (Cominarty) and Oxford-AstraZeneca 
(Vaxzevria) vaccines against COVID-19 related 
hospital admissions. The time-dependent Cox 
model and Poisson regression models were used 
for this. The first dose of the BNT162b2 (Com-
inarty) vaccine was associated with 85% (CI 
95%; 76-91) vaccination effectiveness to prevent 
COVID-19-related hospitalisation, 28-34 days 
after vaccination15. Vaccine effectiveness in the 
same time interval for the ChAdOx1 (Vaxzevria) 
vaccine was 94% (CI 95%; 73-99). The results 
of combined vaccine effectiveness to prevent 
COVID-19-related hospitalisation were compa-
rable, by restricting the analysis to those at an age 
equal to or above 80 (81%; CI 95% 65-90), 28-34 
days following vaccination)15. 

A longitudinal study was conducted in Bra-
zil, to evaluate the effectiveness of CoronaVac 
and Vaxzevria in four different outcomes: SARS-
CoV-2 virus infection, hospitalisation, ICU ad-

mission, and death. Due to the lack of data on 
the unvaccinated population, the period between 
the date of the first dose and the 13th day was 
used as a reference to estimate VE. Full vaccina-
tion (14 days after the 2nd dose) with Vaxzevria 
or CoronaVac displayed 78% and 53% vaccina-
tion effectiveness against SARS-CoV-2 infection, 
respectively. VE against hospitalisation, ICU 
admission, and death, was 91.4% (CI 95% 90.1-
92.5), 91.1 (CI 95% 88.9-92.9) and 92.3% (CI 
95% 90.5-93.7) respectively for Vaxzevria, and 
71.2% (70.0-72.4), 72.2% (70.2-74.0) and 73.7% 
(72.1-75.2) for CoronaVac. The lower protection 
found for older adults is also highlighted, espe-
cially those over the age of 80, particularly with 
CoronaVac5	 . 

Quasi-experimental methods 
and their applications in evaluating 
vaccine effectiveness 

Observational studies (such as cohort, or 
case-control studies), which compare individ-
uals who have been vaccinated with those who 
have not, can be used to evaluate the direct effect 
of the vaccines. However, individuals who have 
been vaccinated may systematically differ from 
those who have not, and it is often difficult, or 
impossible, to separate the effects of these differ-
ences from those related to the vaccine. On the 
other hand, quasi-experimental studies, while 
they are also fundamentally observational, since 
they stem from records of interventions conduct-
ed outside of the researcher`s control,  however 
seek to mimic experimental studies by exogenous 
attribution to eligibility of a treatment, in this 
case, the vaccine, thereby avoiding endogenous 
sources of bias16. 

There is a wide range of scenarios in which 
quasi-experimental methods can be used to eval-
uate vaccines16. Firstly, when a vaccine has already 
been implemented, and, therefore, the use of ran-
domized trials is no longer a viable option, or in 
circumstances where it would be unethical not to 
provide a vaccine to a specific group (control), 
such as during a pandemic. Among the quasi-ex-
perimental methods, we can cite the following: 
interrupted time series, difference-in-differences, 
propensity scores, instrumental variables, and re-
gression discontinuity. 

Interrupted time series
Interrupted Time Series (ITS) are indicated 

to evaluate a large-scale intervention applied at 
population-level, and with a well-defined start 
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date,17,18 where multiple pre- and post-interven-
tion observations are used to examine a change 
in the tendency of the outcome following the 
intervention. ITS studies have been increasingly 
frequent to evaluate the effect of public health 
interventions, highlighting the impact of rotavi-
rus19 and pneumonia20 vaccination programmes. 

ITS studies can be constructed using two ap-
proaches: single and multiple groups. In single 
group studies, there is no comparison group, and 
the effect can be estimated from the change in 
the pre- and post-intervention tendency, so that 
the pre-intervention tendency is counterfactu-
al. However, in multiple group studies, there is 
at least one comparison group, and the change 
in the intergroup outcome tendency (i.e., in the 
pre- and post-intervention period), and between 
the groups (comparison and control group) can 
be evaluated17,21. 

A minimum of three variables is required to 
analyse ITS regression: the time (t) elapsed since 
the start of the study with the unit that represents 
the frequency with which the observations are 
made; the variable that indicates the pre-inter-
vention (Xt) period; and the outcome in each 
period of time (Yt)18,21. 

In order to prepare an interrupted time series, 
a number of assumptions should be fulfilled. Ini-
tially, that there is a clear differentiation between 
the pre- and post-intervention period needs to be 
confirmed, requiring a timeframe for the start of 
the intervention. These studies require a sequen-
tial measure of the outcomes before and after the 
intervention, they can be binary, continuous, or 
counts, and are indicated when the change oc-
curs in a short space of time. In addition, sequen-
tial measures of the outcome over time should 
be similarly distributed both before and after the 
intervention18. 

ITS has already been used in Brazil to eval-
uate rotavirus22 and pneumococcal conjugate 
(PCV10)23 vaccine effectiveness. However, no 
data is available on the use of ITS in COVID-19 
vaccine effectiveness until this time.

ITS studies are useful when randomization 
is impossible, allowing a large-scale longitudinal 
evaluation. In addition, the possibility of work-
ing with aggregated population data contributes 
towards greater external validity16. Quick and 
convenient access to routinely collected health 
data on database, and use of ITS, enables the 
production of information on vaccination effec-
tiveness in real time18. A further important point 
to be raised is the presentation of graphic and 
numerical results, which are easily understood 

by health professionals and managers, and may 
assist with decision-making, and the reallocation 
of resources.

On the other hand, there are limitations. The 
analysis may be subject to residual confounders, 
due to the unavailability of important covariables 
not registered on the databases used. Variables 
which change quickly in time need to be iden-
tified, and treated through multivariate models, 
since they may bias the association found18. Sea-
sonality and the unequal distribution of units of 
time before and after the intervention are also 
factors that need to be taken into consideration18. 

Difference-in-differences 
The difference-in-differences (DD) method 

has been used to evaluate the impact, consider-
ing interventions that vary in time24-26, due to its 
relative convenience, and wide use in evaluations 
of public health interventions27. In order to mea-
sure the effect, DD considers that the treatment 
group estimate (counterfactual) is equal to the 
pre-intervention value of the treatment group, 
added to the control group post/pre-difference28. 
Although DD identifies the average effect in 
those treated, its meaning and identification con-
ditions differ between data types28. 

Use of DD depends on supporting premises. 
Firstly, the value of a stable treatment unit and 
premises of “parallel tendencies”28-30; in oth-
er words, there should not be a spillover effect 
among the treatment and control groups, since 
the treatment effect will not be identified. Ad-
ditionally, the control variables at an individual 
and/or aggregated level should be exogenous, 
and unaffected by the treatment. A typical ap-
proach is the use of covariables prior to the in-
tervention28,29. 

Raymond et al.26 used DD methodology to 
evaluate the effect of the provision of human 
papillomavirus (HPV) vaccination coverage 
in children, on infection by the virus in young 
women. The effect was estimated using linear 
probability regressions, adjusted for race/eth-
nicity, age, income, head of the family`s level of 
education, and family employment26. To the best 
of our knowledge, no reports on the use of DD 
to evaluate COVID-19 vaccine effectiveness are 
available. 

All of the DD analyses should carefully con-
sider any possible violations of assumptions, 
many of which appear to be probable, due to the 
COVID-19 dynamic, such as record quality, the 
non- linearity that arises from person-to-person 
transmission, and the probability that control 
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policies at population-level have different effects 
over time31. By including control groups, DD 
provides important advantages over methods 
such as before and after ITS comparisons.31 In 
addition, the graphic and parametric tools devel-
oped for DD in recent years allow an evaluation 
of the plausibility of assumptions.

Propensity score
The propensity score (PS) is the probability 

of allocating treatment, conditional to the con-
founding variables observed. This score could 
be used to control confounding, making treat-
ment groups more similar in relation to the con-
founding variables observed32. In VE evaluation 
studies, the confounding variables that require 
control are, for example, age, sex, occupational 
profile, health conditions, confidence, and avail-
ability of the vaccine in specific contexts, among 
other aspects. Thus, this information may be 
used to estimate the probability of an individual 
being vaccinated.

The PS is commonly estimated using logistics 
regression, being the status of treatment predict-
ed by the set of confounding variables observed32. 
The selection of independent variables that will 
be included in the PS estimation model is an im-
portant step in the use of this methodology. It is 
recommended that both exposure-related vari-
ables and the outcome being investigated (con-
founding variables) are included32,33. 

Following score estimation, they can be used 
in the analysis to control the confounding vari-
ables observed in four main forms: (i) model ad-
justment, where the PS is included as an adjust-
ment variable in a regression model that relates 
the outcome and exposure of interest; (ii) anal-
ysis stratification, where the PS is used to divide 
the study population into groups, or lower, more 
similar strata in relation to the confounding vari-
ables observed; (iii) participant matching, which 
involves matching an exposed with an unexposed 
individual who has a similar PS; and (iv) mod-
el weighting, where PSs are used to calculate the 
statistical weights for each individual, so that 
when considering the study population, the ex-
posed and unexposed groups become similar in 
relation to the confounding variables observed, 
allowing an impartial estimate of the relation 
between the exposure and outcome.32,33 The last 
two have been highlighted in literature in recent 
years, especially in studies that evaluate VE.

The main assumptions to estimate the causal 
effect in PS based methods include (i)  ignora-
bility, which means that no confounders are ob-

served34; (ii) positivity, which means that every 
individual should have a probability other than 
zero to receive any treatment34; (iii) the correct 
specification of the model used to calculate the 
PS, considering that its calculation is based on 
measured characteristics (variables). If unmea-
sured factors influence the selection of treat-
ment, the resultant PS will not remove all of the 
bias from the confounding variables. In some 
cases, the residual bias could remain, and incor-
rect specifications could increase the bias.34

The use of PS has been widely implemented 
in observational studies, particularly to evaluate 
the effectiveness of various medicines, highlight-
ing VE studies for influenza35–37 and rotavirus.38 
Therefore, use of PS could be an important meth-
odological alternative to evaluate COVID-19 
vaccine effectiveness. However, since the method 
controls exclusively for the confounding vari-
ables observed, it requires a significant number 
of covariables that are associated both with the 
vaccination (e.g., distribution, vaccination cov-
erage, prioritization criteria – such as age, co-
morbidities, profession, and vulnerable popula-
tions, among others), for the outcome of interest, 
whether infection, hospitalisation, or death by 
COVID-19.

Until this time, the use of PS has only been 
identified in one study, which paired individuals 
receiving a minimum of one dose of any of the 
vaccines with unvaccinated individuals, accord-
ing to demographic data, location (post code), 
and the number of previous PCR SARS-CoV-2 
tests.39 The authors highlighted that the admin-
istration of two doses of the COVID-19 vaccine 
(mRNA-1273 [Moderna], or BNT162b2 [Pfizer/
BioNTech]), was 88.7% effective in preventing 
SARS-CoV-2 (CI 95%: 68.4-97.1%) infection. 
In addition, the administration of a minimum 
of one dose of the vaccines reduced hospital ad-
mission rates by 14 days for patients who were 
subsequently diagnosed with COVID-19 follow-
ing immunization, in relation to those who were 
not vaccinated (3.7% vs. 9.2%; relative risk: 0.4; 
p-value: 0.007).39 Therefore, it is emphasised that 
evaluation of the effectiveness of COVID-19 vac-
cines using the PS method is limited in literature.

Instrumental variables
Instrumental variables have been used in-

creasingly as a strategy to control confounding in 
non-randomized study designs. Unlike the pro-
pensity score, instrumental variables use an exog-
enous form of variation, or “instrument”. The in-
strument should: (1) be the cause or “proxy” for 
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exposure; (2) only be outcome related through 
exposure; and (3) not be associated with any con-
founding variable not measured in the study40. 

In instrumental variable analysis, the effect 
of the intervention on the outcome of interest 
is measured by comparing the magnitude of the 
association between the instrument and outcome 
with that between the instrument and interven-
tion exposure40. A sequence of two regression 
analyses is generally used, which depends on the 
nature of the exposure and the outcome. Selec-
tion of an instrument is a fundamental part of 
the design, and is not simple. Even if the three 
above assumptions are met, the association be-
tween the instrument and intervention exposure 
should be strong. Inadequate instruments which 
establish a weak association with the interven-
tion may produce inflated estimates, with broad 
confidence intervals40. 

The use of instrumental variables has not 
been widely used in the context of evaluating VE. 
We highlight the study by Wong et al.41, which 
evaluated the effectiveness of the influenza vac-
cine in the hospitalisation and death of elderly 
patients, using influenza vaccination coverage 
among people aged 65 or over as the instrument. 
A study by Chakrabarti et al.42, also evaluated the 
effect of supplementary immunization activities 
in routine health service vaccination coverage. 
The authors evaluated if the child had obtained 
the main routine vaccination, or not, using the 
child`s age in the first supplementary immuniza-
tion campaign as the instrument.42 Use of meth-
odologies using instrumental variables to evalu-
ate COVID-19 vaccination effectiveness has not 
been documented in literature until this time.

When applied to evaluating COVID-19 
vaccine effectiveness as instrumental variables, 
they could have great analytical power, given 
the difficulty in obtaining individualized data 
that contains clinical information and comor-
bidities, strongly associated with hospitalisation 
and  mortality caused by the disease. Exogenous 
sources of variation, which could be used as in-
struments include age, the location of residence 
(municipality or state), and vaccination cover-
age, as conducted in the study by Wang et al.41.

The advantage of this method is due to the fact 
that the selection of a good instrument allows a 
non-biased estimate of association between inter-
vention and outcome, without the need to mea-
sure all the confounding variables. This becomes 
crucial when conducting studies with secondary 
bases, where the data has already been collected. 
However, the main methodological limitation 

related to the instrumental variable approach, is 
the difficulty in finding good  instruments, which 
may reduce the capacity to detect small effects, 
even in studies with large databases43. 

Regression discontinuity design 
Regression discontinuity design (RDD) has 

been used increasingly in research in the area of 
epidemiology and public health.44-47 It allows the 
effect of an intervention to be measured when 
the eligibility rules are based on a previously de-
fined threshold (cut-off point). In other words, 
in regression discontinuity exposure to a treat-
ment, or intervention, is determined by a contin-
uous variable, such as the income or age of an 
individual, called the attribute variable, and the 
cut-off point for this variable defines interven-
tion eligibility (or treatment). Generally speak-
ing, RDD assumes that the intervention attribute 
(or treatment) in a small neighbourhood around 
the cut-off point is ignorable, and the potential 
response could be assumed independent of the 
attribute, which occurs in a randomized study.

Regression discontinuity design can be de-
scribed in a deterministic or probabilistic way. 
For example, if all of the individuals above the 
cut-off point receive the vaccine, and nobody re-
ceives the vaccine under the cut-off point, then 
regression discontinuity is considered determin-
istic, known as sharp regression discontinuity. In 
contrast, if the probability of receiving the vac-
cine on one side of the cut-off point is greater 
in relation to the other, the design is said to be 
probabilistic, known as fuzzy regression discon-
tinuity. Thus, in sharp RDD the intervention (or 
treatment) attribute rule perfectly determines 
the exposure, while in fuzzy RDD, the attribute 
rule causes a discontinuous change in the prob-
ability of exposure around the cut-off point, and 
this discontinuity is used to estimate the local 
causal effect of the change on the policy, or inter-
vention, among the individuals who are around 
the cut-off point46,48. 

RDD has assumptions which can make its 
use inadequate, if they cannot be verified. The as-
sumptions associated with discontinuous regres-
sion design are: 1) the existence of discontinuity 
in the probability of exposure; 2) non-manipula-
tion of attribute variable values; 3) interchange-
ability; and 4) continuity in the probability of the 
response at the cut-off point. The first assump-
tion evaluates if there is a discontinuous change 
in the probability of exposure around the cut-off 
point. The assumption of non-manipulation of 
the attribute variable suggests that the individu-
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als in the study did not alter the information on 
this variable. Manipulation of this information 
would violate the assumption that the groups 
are attributed to the intervention (or treatment), 
which occurs in randomized studies. The as-
sumption of interchangeability suggests that the 
exposure groups could be interchanged around 
the cut-off point. If this assumption is valid, it is 
expected that the individuals around the cut-off 
point are similar in relation to the distribution 
of all the baseline variables. The last assumption 
of RDD could be seen as an extension of the as-
sumption of interchangeability, and suggests that 
any discontinuity in the probability of the re-
sponse could solely be attributed to exposure. We 
highlight that these assumptions are considered 
weak, and can be confirmed through graphic 
analyses, or statistical tests46,47. 

For example, in studies that evaluate VE, the 
criteria (or eligibility rule) which makes an in-
dividual eligible to receive the vaccine, is usually 
age. Thus, individuals who are over a previous-
ly-defined age limit, are considered eligible for 
the intervention. Therefore, in this type of study, 
age would be our attribute variable. Use of dis-
continuous regression in studies on VE is still in 
the early stages, but we can cite some recent work 
which made use of this type of study design. For 
example, Frio and França49 used fuzzy RDD to 
evaluate if the HPV vaccination affected the start 
of a sex life in girls in the age range close to the 
cut-off point (14 years old), which is defined by 
the public vaccination campaign49. The authors 
also investigated if the teenagers who had already 
started to have a sex life, stopped using condoms 
since they had been vaccinated49. The studies by 
Van Ourti and Bouckaert (2020)50 and Anderson 
et al.51, used RDD to evaluate vaccine effective-
ness against the influenza virus. In Van Ourti and 
Bouckaert`s50 study, the authors estimated the 
impact of the Dutch vaccination programme on 
the use of medication, outpatient consultations, 
hospitalisation and mortality at the age of 65 
(cut-off point), and concluded that there was an 
increase in the vaccination rate, but they did not 
find a relation with a possible reduction in hos-
pitalisation, or mortality rates in the population 
analysed. In the study by Anderson et al.51, the 
authors evaluated vaccine effectiveness in the re-
duction of hospitalisations and mortality among 
older adults in the 65 year old age range (cut-off 
point), and concluded that there was an increase 
in vaccination rates, but they did not find a rela-
tion with a possible reduction in hospitalisation, 
or mortality rates, in the population analysed.

Application of RDD to evaluate the effective-
ness of COVID-19 has been discussed52, but its 
application is still in the early stages53,54. RDD was 
used in 2020 to evaluate if the BCG vaccination, 
applied to protect against tuberculosis, could re-
duce COVID-19 infection.55 However, an associ-
ation between greater BCG vaccination coverage, 
and a lower chance of age-specific COVID-19 
infection, was not found using data in the five 
countries applying this design55. In England, 
effectiveness of the first dose of the COVID-19 
vaccine was evaluated using age, defined as the 
priority criterion for the vaccine in this country, 
as a treatment attribute variable53. Another study 
evaluated the effectiveness of the COVID-19 vac-
cination in hospitalisation rates for the disease in 
New York, also applying the age criterion as an 
attribute variable54. However, we highlight that 
the rather broad age ranges may violate RDD as-
sumptions, and should be verified.

Vaccines in use and with potential use 
in Brazil

The COVID-19 vaccines developed until 
this time (using data updated on 8th September, 
2021) are based on four main technologies: 1) 
inactivated SARS-CoV-2 virus vaccines (Coro-
naVac); 2) recombinant vaccines which use ade-
novirus viral vectors, expressing the SARS-CoV-2 
Spike protein (S) (the Janssen vaccine uses a hu-
man adenovirus, and Vaxzevria uses a chimpan-
zee adenovirus); 3) messenger RNA (mRNA) 
vaccines, which codify the SARS-CoV-2 (Comir-
naty) S protein; and 4) protein subunit vaccines, 
which use SARS-CoV-2 S protein nanoparticles, 
or fragments of this protein (Novavax)56. 

Chart 1 presents characteristics of the four vac-
cines authorised by the National Sanitary Surveil-
lance Agency (Anvisa) for emergency or definitive 
use in the country until September 2021. They are, 
Vaxzevria (ChAdOx1-S; Oxford–AstraZeneca–Fi-
ocruz, produced in partnership with the Serum 
Institute of India), CoronaVac (Butantan/Sinovac 
Biotech), Comirnaty (Pfizer/BioNTech/Wyeth), 
and Janssen-Cilag (Johnson & Johnson). They 
are all indicated for people aged 18 or over, except 
for Comirnaty, which is authorised for those over 
the age of 12, and have a two dose vaccination 
scheme, except for Janssen, which is applied in a 
single dose. The administration of Vaxzevria was 
temporarily interrupted for pregnant women and 
those who have recently given birth.

Until now, the simultaneous administration 
of COVID-19 vaccines with others on the nation-
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al immunization calendar is not recommended, 
to improve monitoring of adverse events follow-
ing vaccination, and due to a lack of knowledge 
on the possibility of antigenic competition. 

The administration of additional doses, or 
interchangeability between different vaccines 
has been discussed, and may be recommended 
in specific situations (e.g., pregnant women and  
the immunosuppressed). Although attractive as 
a public health policy, a combination of vaccines 
awaits proof of efficacy and effectiveness. The 
Center for Disease Control Prevention (CDC/
EUA) and Public Health England only advo-
cate this in exceptional situations, or if there is 
a lack of vaccines. In Brazil, based on the possi-
ble association of viral vector vaccines with rare 
thrombotic events57, a combination is indicated 
for pregnant women who receive a first dose of 

Vaxzevria, with the second dose of Comirnaty 
or CoronaVac. For the same reason, a number of 
European countries, and Canada, have recom-
mended the second dose with mRNA vaccines 
for people under the age of 55 who received their 
first dose with Vaxzevria58,59. Considering the 
change in guidelines in these countries, data on 
combined VE will be available in the near future.

Existing and accessible data in Brazil 
– Limitations and possibilities 

In a context of increasing vaccination, there 
is a growing need for rapid answers on crucial 
questions, in order to orientate vaccination pro-
grammes. Among these, we highlight (1) the ef-
fect of new variants of the virus on vaccine ef-
fectiveness; (2) the optimum interval between 

Chart 1. Characteristics of vaccines in use in Brazil in September 2021.

Vacine
Doses applied

(%)

Interval 
between doses 

(weeks)

Seroconversion 
(%)

Efficacy (% of 
protection)

Overall effectiveness

CoronaVac 68,697,598 
(33.8)

2 to 4 92 (14 days) 
and 97 with 28 
days

77.96% (for 
symptomatic cases 
with  outpatient or 
hospital care)

N/A

Vaxzevria 91,054,329 
(44.8)

Up to 12 >98 following 
the 1st and >99 
following the 
2nd dose

73.43% in the 
general population 
and among people 
with comorbidities

N/A

Comirnaty 38,820,038 
(19.1)

12 N/A 92.6% following 
the 1st, and 95.0% 
following the 2nd 
dose

Health workers = 80% 
1st dose, and 90% 2nd 
dose
The elderly >70 years 
old = 80% (reduction 
in hospitalisation) 
and 85% (reduction 
in deaths)
General population 
= 97% (symptomatic 
cases, need for 
hospitalisation and 
death)

Janssen  4,674,271
(2.3)

Single dose N/A 66.9% after 14 
days, and 66.1% 

after 28 days. 
Efficacy was 76.7% 
after 14 days, and 

85.4% after 28 days 
in the prevention 
of serious cases.64

NA

Sources: National Plan to Operationalise COVID-19 Vaccination56,64.
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doses; (3) the effect of the vaccines on asymp-
tomatic infection, against serious disease; (4) the 
decline in immunity over time, and (5) the need, 
or usefulness, of combining different vaccines, 
or booster doses. In this context, the use of data 
originating from large databases of data routine-
ly collected by the health system, associated with 
appropriate methods of analysis, has been one 
of the solutions presented in various countries. 
For any chosen investigation, both classic ob-
servational studies, and the use of quasi-experi-
mental designs, require high quality information, 
whether related to the vaccination status of each 
individual, health outcomes, or the covariables 
required.

At the start of the pandemic, Scotland built 
a large integrated data system60, which has been 
widely used for epidemiological and COVID-19 
clinical studies and is currently employed to eval-
uate BNT162b2 vaccine effectiveness61. In Isra-
el, a follow-up study used the databases of four 
health organizations, which cover more than 
half of the population, to combine health histo-
ry information, RT-PCR test results, outpatient, 
hospitalisation and vaccination data, to estimate 
the effectiveness of the first and second doses of 
the BNT162b2 vaccine at protecting from infec-
tion, symptomatic COVID-19, hospitalisation, 
serious disease, and death.62 Outside of the cir-
cle of developed countries, Chile has presented 
a major study on the effectiveness of the main 
vaccine in use in the country (CoronaVac), also 
utilising data which is routinely collected  on 
national databases13. In Brazil, two effectiveness 
studies based on routine data were conducted us-
ing the case-control approach. The first, of health 
professionals from Manaus4, and the other with 
the elderly population in the state of São Paulo11, 
both evaluating the effectiveness of CoronaVac, 
or CoronaVac and Vaxzevria, throughout the 
country5. 

In Brazil, a series of databases register and 
provide complete or partial data that is poten-
tially useful to study COVID-19 vaccine effec-
tiveness. Of specific interest are databases with 
individualized, identified, or pseudonymised 
data, allowing analyses that bring together differ-
ent markers for exposure and outcomes, and rel-
evant covariables. Unfortunately, we do not have 
a unified system with all of the relevant, required 
information, since it is dispersed throughout dif-
ferent records. 

We will now provide a brief description of 
the databases available until this time. In the 
first group are databases which were created, or 

extended, to register COVID-19 related events, 
while the others are for regular use, and include 
important information for COVID-19 related 
studies. They all provide dictionaries and open 
data on the OpenDataSUS site. 

 Databases produced for COVID-19 
related events
a) National COVID-19 Vaccination Cam-

paign: Contains demographic (age, sex, race/skin 
colour, and place of residence), and vaccination 
data (date the vaccine doses were administered, 
type of vaccine, batch, and place vaccine was ad-
ministered) (Available at: https://opendatasus.
saude.gov.br/dataset/COVID-19-vacinacao). 

b) Notifications of Influenza-like Illness: The 
data originates from the e-SUS NOTIFICA 
(e-SUS NOTIFIES) system, which was devel-
oped to register cases of Influenza-Like Illness 
(ILI) suspected of being COVID-19. Sociodemo-
graphic (age, sex, race/colour and occupation, 
according to the Brazilian Occupation Classifica-
tion, which is only mandatory for health profes-
sionals) and clinical-epidemiological data (type 
of test conducted and the results, evolution, final 
classification, type of symptom, and associated 
clinical conditions) is recorded. There is also in-
formation on the patient’s place of residence and 
notification location (state and municipality), 
and dates that the symptoms started, notifica-
tion, and tests conducted (Available at: https://
opendatasus.saude.gov.br/dataset/casos-nacio-
nais).

c) 2020 and 2021 Severe Acute Respiratory 
Syndrome (SARS) Database: the notification of 
severe acute respiratory syndrome (SARS) hospi-
talisations and deaths is mandatory in Brazil, and 
records are stored on the SIVEP-Gripe (Influ-
enza Epidemiological Surveillance Information 
System) computerised database. The database 
includes sociodemographic (date of birth, sex, 
race/colour, and level of education) and clini-
cal-epidemiological data (signs and symptoms, 
associated clinical conditions, type of test con-
ducted and its result, evolution, final classifica-
tion, use of mechanical ventilation, and admis-
sion to an ICU bed, among others). There is also 
information on the patient’s place of residence 
and notification location (state and municipal-
ity), the health centre used, and details such as 
dates of the start of symptoms, admission, re-
lease, or death, notification and tests conduct-
ed (Available at: https://opendatasus.saude.gov.
br/dataset/bd-srag-2021; https://opendatasus.
saude.gov.br/dataset/bd-srag-2020).
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Regularly collected data that could be the 
source of COVID-19 outcomes
a) SUS Hospital Information System (SUS/

HIS): Access to Hospitalisation Authorisations 
(HA) requested and authorised during the peri-
od of study are obtained through this system;

b) Mortality Information System (MIS): access 
to Death Certificates (DC) registered on the MIS 
on a monthly basis, independent of any review or 
criticism, registered during the period of study. 
The update could be monthly, through access to 
files in the DataSUS native dissemination format 
(.dbc), with the full details registered on the DC. 
This information is important to monitor the 
reduction in deaths as a result of vaccination. 
However, the registration of revised mortality 
experiences a delay of at least six months, which 
imposes a limitation on its use on evaluating vac-
cination effectiveness.

Data linkage
Within the context of the Brazilian health data 

ecosystem, the isolated use of the above-men-
tioned databases is, in general, inadequate for a 
valid assessment of vaccine effectiveness, since 
the relevant variables are dispersed through-
out different databases. For example, we have a 
database that provides information on the vac-
cine doses of every individual, their age, and sex, 
among other details, but other databases are re-
quired to discover if this individual was infected, 
or became a COVID-19 clinical case. Therefore, 
linkage strategies for these different databases al-
low for the capture and incorporation of relevant 
information which is available on only one of the 
databases, or which have a varying quality of re-
cords and level of completeness between them. 
This process provides new possibilities for inves-
tigation with national databases63 and prospects 
for investigation into health, particularly in VE 
evaluation studies.

The objective of linking databases is finding 
records for the same individual on different da-
tabases, in order to combine the various items of 
information for each of them. In the presence of 
an unmistakable identification variable between 
the databases, the deterministic method is used, 
and records are related by comparing this vari-
able on the different databases. In the absence of 
a variable of this nature, the probabilistic record 
linkage method is used, which involves estimat-
ing the probability of agreement and disagree-
ment between the common variables on the 
databases for the record pairing process. While 
the deterministic method involves a single stage 

of comparison, the probabilistic method may in-
volve a series of stages, such as standardisation, 
blocking, and matching.

Conclusions and Recommendations 

In the complex and dynamic context that has 
characterized the development of this pandemic, 
vaccination effectiveness studies are gaining im-
portance, as part of the resources which are able 
to produce evidence that subsidises the relevant 
decisions that are required to control the pan-
demic. 

Although it is important to highlight the re-
sults of the efficacy of COVID-19 vaccines, under-
standing VE is a more complex task, particularly 
in a pandemic context with a reduced number 
of doses available, various types of vaccines, and 
the emergence and circulation of different strains 
of the SARS-CoV-2 virus. Classic observational 
studies, particularly test-negative case-control 
and longitudinal studies are approaches which 
have been used frequently, due to convenience, 
their designs are widely known, and analytical 
methods are standardized on various software 
programs. While quasi-experimental (or natural 
experiments) studies are strictly observational, 
they include a diversified series of designs, which 
seek to reduce the chance of biases introduced by 
non-randomized vaccination, since the decision 
to be vaccinated, or not, in the real world depends 
on various, non-random factors. 

There are a wide range of scenarios in which 
quasi-experimental studies can be used for vac-
cine evaluation. The possibility of using data 
with exogenous attributes, primarily without the 
requirement of high quality data, avoids sources 
of bias, and makes quasi-experimental designs 
an excellent choice to evaluate COVID-19 vac-
cine effectiveness. Methods such as ITS, using 
aggregated data, PS, DD, Instrumental Variable 
and RDD on an individual level, may be used 
to evaluate vaccine effectiveness. However, their 
widespread use faces a series of limitations. For 
example, the main limitation of the PS is that it 
only controls measured variables, and is depen-
dent on the availability of databases with covari-
ables, which is not always the case. Instrumental 
variables may not necessarily be good analysis 
options, since the assumptions can easily be vi-
olated, given the difficulty of obtaining good in-
struments in a context of constant changes in 
eligibility criteria, and the rapid expansion of 
vaccination coverage. 
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The evaluation of COVID-19 vaccine effec-
tiveness, although estimated by quasi-experi-
mental methods, should also take other sources 
of variation into account, which may hinder the 
attainment of unbiased measures, such as 1) the 
introduction of different strains of SARS-CoV-2; 
2) the administration of different vaccines and 
multiples immunization strategies (number, 
time interval between doses, and combination of 
vaccines); 3) stage of the epidemic in each loca-
tion evaluated; and 4) difficulties with gathering 
records in different Brazilian municipalities. 

In this review, we have presented the immense 
variety of options that exist for any researcher 
who is interested in following VE in populations, 
particularly COVID-19 vaccines. The ecosystem 
of data available is crucial for selecting the best 
evaluation strategies. It should be clarified that 
whichever option selected, there will be limita-
tions that, possibly, may not be able to satisfy all 
of the assumptions. The researcher is responsible 
for selecting the analytical strategies that are best 
suited to the context, are the most robust possi-
ble, and always include sensitivity tests that sup-
port (or not) their findings.  
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