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ABSTRACT
INTRODUCTION Diabetic foot ulcers are a chronic complication 
in patients with diabetes mellitus. They appear as a result of the 
combination of diabetic polyneuropathy and angiopathy, and in many 
cases require amputation of the affected extremity. Clinical trials 
have demonstrated that repeated local infi ltration with Heberprot-P 
can improve healing of chronic diabetic foot ulcers. Although there 
is evidence of its effects as a granulation stimulator and on cell 
migration and proliferation, genetic control mechanisms explaining its 
anti-infl ammatory and oxidative stress reduction properties are not yet 
thoroughly understood.

OBJECTIVE Analyze changes in expression of genes involved in 
healing after treatment of diabetic foot ulcers with Heberprot-P.

METHODS Biopsies were collected from diabetic foot ulcers of 
10 responding patients before and after 2 weeks’ treatment with 
Heberprot-P (75-μg applied intralesionally 3 times per week). Total 
RNA was obtained and quantitative PCR used to determine expression 
of 26 genes related to infl ammation, oxidative stress, cell proliferation, 

angiogenesis and extracellular matrix formation. Genetic expression 
was quantifi ed before and after treatment using REST 2009 v2.0.13. 

RESULTS After treatment, there was a statistically signifi cant increase 
in expression of genes related to cell proliferation, angiogenesis 
and formation of extracellular matrix (PDGFB, CDK4, P21, TP53, 
ANGPT1, COL1A1, MMP2 and TIMP2). A signifi cant decrease was 
observed in gene expression related to infl ammatory processes and 
oxidative stress (NFKB1, TNFA and IL-1A).

CONCLUSIONS Our fi ndings suggest that Heberprot-P’s healing 
action on diabetic foot ulcers is mediated through changes in genetic 
expression that reduce hypoxia, infl ammation and oxidative stress, 
and at the same time increase cell proliferation, collagen synthesis 
and extracellular matrix remodeling. The kinetics of expression of 
two genes related to extracellular matrix formation needs further 
exploration.

KEYWORDS Epidermal growth factor, EGF, diabetic foot ulcer, wound 
healing, quantitative real-time PCR, gene expression, Cuba

INTRODUCTION
Diabetes mellitus (DM) is a chronic disease with increasing 
global prevalence over recent decades; according to WHO, 
DM affects 8.5% of the global population.[1] One of its main 
complications is lower-extremity ulceration, known as diabetic 
foot ulcer (DFU), which often leads to amputation.[2,3] Recent 
reports on DM in Cuba suggest an overall prevalence of 58.3 per 
1000 population.[4]

Diabetes-induced hyperglycemia activates four biochemical 
pathways: the polyol, hexosamine, protein-kinase C (PKC) and 
advanced glycation end products (AGE). Together, these cause 
infl ammation and oxidative stress (OS).[5,6] 

Endothelial cells in the vasculature, neurons and Schwann cells 
in peripheral nerves contain only high-affi nity glucose transporter 
proteins (GLUT1 and GLUT3).[7] Thus, in hyperglycemic 
conditions, a massive and unregulated amount of glucose enters 
these cells, which makes them targets for infl ammation and OS, 
and explains the occurrence of long-term complications such as 
diabetic angiopathy and polyneuropathy—the main causes of 
DFU.[8,9]

Wound healing is the process by which damaged tissue is 
replaced by healthy connective tissue, forming a scar. This 
process can be divided into four dynamic, overlapping phases: 
vascular response, infl ammatory response, proliferation and 
maturation (or remodeling).[10]

According to estimates from Berlanga in 2013, 3000 to 5000 
amputations are performed annually in Cuba due to DFU. To 
treat DFU, the Genetic Engineering and Biotechnology Center in 
Havana developed Heberprot-P, based on human recombinant 
epidermal growth factor (EGF).[11] 

Local conditions resulting from hyperglycemia in DM include:
• decreased vascularization from a reduction in expression of 

genes regulating angiogenesis, namely vascular endothelial 
growth factor (VEGF) and angiopoietin-1. This causes hypoxia 
and cytoplasmic membrane rupture leading to release of cel-
lular content, increased infl ammation and OS. 

• increased chronic infl ammation and OS. These are linked to 
diabetic angiopathy and polyneuropathy and are a conse-
quence of increased expression of proinfl ammatory cytokine 
genes, including tumor necrosis factor alpha (TNFA), inter-
leukin 6 (IL-6), and interleukin 1 alpha (IL-1A). There is also 
increased expression of genes for the receptor for advanced 
glycation end products (AGER), related to OS, as well as the 
gene that regulates their expression, NF-kappa B transcription 
factor (NFKB1). 

• reduced bioavailability of growth factors due to the excess 
of proteases released by active neutrophils. There are fi ve 
families of growth factor: EGF, platelet-derived growth factor 
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(PDGF), transforming growth factor beta (TGFB), insulin-like 
growth factor (IGF) and fi broblast growth factor (FGF). They 
all play a part in healing and the processes of chemotaxis, 
cell proliferation induction, angiogenesis stimulation, synthe-
sis regulation and extracellular matrix (ECM) degradation. 
Prolonged infl ammation prevents progression to the prolif-
eration phase and causes delayed or incomplete healing.
[12,13]

Although gene expression can be controlled at various levels, it 
is widely accepted that it generally happens in DNA transcription, 
and evidence of degree of a gene’s expression can be observed 
by measuring the quantity of messenger RNA corresponding 
to the gene’s DNA.[14,15] To study gene expression variation, 
real-time PCR is routinely used in molecular biology to amplify 
products transcribed from messenger RNA. Quantifi cation of 
such variation may be relative (based on target gene expression 
relative to that of a reference gene) or absolute (based on an 
internal or external calibration curve). With relative quantifi cation, 
change in RNA expression is shown as the fold change between 
two sample groups using normalization, a process that compares 
the degree of expression of the genes being studied with two or 
more reference genes that have unchanging expression levels, 
regardless of cell type and treatment being investigated.[16]

It has been reported that treatment with Heberprot-P leads to 
a 77% cure rate in cases of DFU,[17] and that EGF stimulates 
proliferation of epithelial cells, fi broblasts and vascular endothelial 
cells.[13] However, there is little information regarding which 
changes in gene expression could lead to ulcer healing in patients 
with DFU treated with EGF.

This study’s goal was to analyze changes in gene expression 
involved in processes affecting DFU healing (infl ammation and 
OS, cell proliferation, angiogenesis, and ECM formation and 
remodeling) after treatment with Heberprot-P and clinical evidence 
of patient response. 

METHODS
Design Ulcerous tissue was biopsied in 156 patients 
included in clinical trial code IG/FCEI/PD/0911 in the Cuban 
Public Registry of Clinical Trials, prior to treatment (T0) with 
Heberprot-P (75-μg dose applied intralesionally, 3 times per 
week). Another biopsy was taken after 2 weeks of application 
(T1) in granulation tissue. At the end of the study, 29 patients 
met the following criteria: they had been treated for Wagner 
grade 3–4 diabetic foot ulcers, they responded to treatment 
with Heberprot-P,[2] and their RNA samples were of optimal 
quality for differential expression studies.[18] Of the 29 
patients who met study criteria, 10 were chosen at random, 
the minimum sample size able to detect a 1.5-fold difference 
with 80% statistical power and a maximum of 5% type I error.
[19] Patients were considered responders if they had complete 
wound closure at end of treatment with Heberprot-P.

Relative expression of genes of interest was measured by 
comparing expression levels in biopsies taken at T1 vs. T0. 
The experiments were normalized using previously validated 
reference genes as internal controls, each group with a total of 
10 biological replicates; 3 technical replicates were used for each 
gene. A signifi cance threshold of p = 0.05 was chosen. 

RNA purifi cation Extracted samples were stored in Ambion 
RNAlater (AppliedBiosystems, USA) at −20°C for one week. 
Tissue was processed in a Tissue Lyser unit (Qiagen, Germany). 
Total RNA was extracted with the RNeasy Plus reagent kit (Qiagen 
GmbH, Germany) using the Quiacube platform (Qiagen, Germany).

RNA quality control Quantity, purity and integrity of RNA was 
assessed using the Nano Drop spectrophotometer (Thermo 
Fisher Scientifi c, USA) and the Bioanalizador Agilent 2100 with 
the Eukaryote RNA 6000 Nano Chip (Agilent Technologies, 
USA). RNA integrity values greater than seven are considered 
acceptable for differential gene expression studies.[18]

Complementary DNA synthesis The complementary DNA chain 
was synthesized from 1 μg of total RNA using Superscript III 
First-Strand Synthesis Supermix for qRT–PCR (Invitrogen 
Technologies, USA), per manufacturer’s instructions.

qPCR and bioinformatics tools Gene sequence expression 
was obtained from the US National Center for Biotechnology 
Information database (Table 1).[20] Specifi c primers were 
designed for amplifi cation of genes of interest, using the web 
application Primer3.[21] Reference genes were selected from 
a group of candidate genes using the geNorm tool.[22] qPCR 
reactions were incubated in an optical detection rotor (Capital 
Bio Co., China) and prepared using the Thermo Scientifi c 
ABsolute QPCR SYBR Green Mix reagent case (Thermo Fisher 
Scientifi c, USA), per manufacturer’s instructions. The qPCR 
data was analyzed using the Capital Bio RT-Cycler analysis 
program, version 2.001 (Capital Bio Co. Ltd., China) and relative 
quantifi cation of genetic expression was performed using REST 
2009 v2.0.13.[23] Differences were expressed as fold changes.

Ethics Samples used in this study were from a clinical trial 
(code IG/FCEI/PD/0911, approved by Cuba’s Center for State 
Control of Medicines and Medical Devices, registration number 
Reg/10/002/Z/SAEC/01, results not yet published). Participating 
patients gave written informed consent according to Declaration 
of Helsinki principles.[24]

RESULTS
Quality control performed with Bioanalyzer and Nanodrop complied 
with accepted parameters for RNA sample use in differential gene 
expression studies.[18] Average RNA concentration was 468.96 
ng/uL (SD 308.57) at T0 and 669.08 ng/uL (SD 365.24) at T1. 
RNA integrity was 8.22 (DS 0.82) at T0 and 8.2 (DS 0.9) at T1.

Comparing DFU patients’ biopsies at T1 to those at T0 revealed an 
increase in expression of genes related to cell proliferation (CDK4, 
CDKN1B, P21, TP53 and FOS); differences were statistically 
signifi cant for CDK4, P21 and TP53 (Table 2). There was also 
increased expression of genes involved in collagen synthesis 
and ECM remodeling, (COL1A1, MMP2, MMP7, MMP9, TIMP1 
and TIMP2). Increases were statistically signifi cant for COL1A1, 
MMP2 and TIMP2 (Table 2). Decreases were detected for genes 
related to infl ammation and OS (IL-1a, IL-6, IL-17, TNFA, NFKB1 
and AGER), statistically signifi cant for NFKB, TNFA and IL-1A, but 
not for IL17, IL6 and AGER (Table 2).

Expression increased for another group of genes related to pro-
liferation and cell migration—protein-3 insulin-like growth factor-
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binding factor (IGFBP3) and PDGFB—but the increase was only 
statistically signifi cant for PDGFB. Prohibitin (PHB) expression 
decreased, but not signifi cantly.

There was increased expression of VEGFA and ANGPT1—genes 
related to angiogenesis and ischemia—the latter statistically sig-
nifi cant, while there was reduced expression of hypoxia-inducible 
factor 1, alpha subunit (HIF1A). There was also decreased ex-
pression of TGFB 1 and connective tissue growth factor (CTGF), 
genes related to ECM formation; and of phospholipase C, gamma 
1 protein, (PLCG1), genes related to the PKC pathway (Table 2).

DISCUSSION
A proposed conceptual model of Heberprot-P’s mechanism is 
displayed in Figure 1. 

Biochemical mechanisms suggested for diabetic neuropathy’s 
etiology include nonenzymatic glycosylation with AGE formation 
and activation of the PKC pathway, which cause both infl ammation 
and OS. They also contribute to damage in nerve, glial and 

vascular endothelial cells, causing diabetic angiopathy and 
polyneuropathy.[25] 

AGE molecules can spread outside cells and modify blood proteins 
such as albumin. By binding to specifi c AGERs, these modifi ed 
proteins activate the NFKB1 pathway, which induces expression 
of proinfl ammatory cytokines and increases production of reactive 
oxygen species. NFKB1 also controls AGER expression.[25,26]

The signifi cant decrease at T1 in expression of the transcription 
factor NFKB1 is associated with reduced expression of 
proinfl ammatory cytokines and AGER genes. This implies, in turn, 
less damage from infl ammation and OS. The lack of statistical 
signifi cance for the reduced expression of proinfl ammatory 
cytokines genes IL 6 and IL17 can be explained by data dispersion.

The PLCG1 enzyme catalyzes formation of diacylglycerol (DAG), 
a PKC pathway activator.[27] Therefore, the observed decrease in 
PLCG1 expression (Table 2) may have prevented activation of the 
PKC pathway, an important mechanism in the physiopathology of 
diabetic complications.

Increased expression of VEGFA and ANGPT1 genes (the latter 
signifi cantly) favors angiogenesis, and is related to decreased 
expression of HIF1A, a transcription factor expressed in tissue 
hypoxia (Table 2). This increased blood fl ow may promote DFU 
healing.

Table 1: Genes analyzed by qPCR
Gene Access # Biological function
AGER NM_001136.4 AGE receptor
ANGPT1 NM_001146.3 Transcription factor
CDK4 NM_000075 Cell cycle
CDKN1B NM_004064.4 Cell cycle
COL1A1 NM_000088.3 Collagen protein
CTGF NM_001901.2 Growth factor
FOS NM_005252.3 Transcription factor
HIFA1 NM_001243084.1 Transcription factor
IGFBP3 NM_001013398.1 Cell proliferation
IL-17 NM_002190.2 Proinfl ammatory cytokine
IL-1A NM_000575.4 Proinfl ammatory cytokine
IL-6 NM_000600.4 Proinfl ammatory cytokine
MMP2 NM_004530.5 Tissue remodeling
MMP7 NM_002423.4 Tissue remodeling
MMP9 NM_004994.2 Tissue remodeling
NFKB1 NM_003998.3 Transcription factor
P21 (WAF1) NM_000389.4 Cell cycle
PDGFB NM_002608.2 Growth factor
PHB NM_002634.2 Transcription factor
PLCG1 NM_002660.2 Membrane associated enzyme
TGFB1 NM_000660.3 Growth factor
TIMP1 NM_003254.2 Tissue remodeling
TIMP2 NM_003255.4 Tissue remodeling
TNFA NM_000594.3 Proinfl ammatory cytokine
TP53 NM_000546.4 Transcription factor
VEGFA NM_001025366.1 Growth factor
GAPDH NM_001256799.2 Reference gene
MAP2K5 NM_001206804.1 Reference gene
MAPK6 NM_002748.3 Reference gene
RPL13A NM_001270491.1 Reference gene
YWHAZ NM_001135699.1 Reference gene

AGE: advanced glycation end product
Source: US NCBI[20]

Table 2: Change in gene expression after treatment with Heberprot-P

No. Gene Fold change P-value Direction of 
change*

1 AGER −1.20 0.190
2 ANGPT1 1.45 0.001 ↑
3 CDK4 1.48 0.009 ↑
4 CDKN1B 1.04 0.568
5 COL1A1 1.67 0.005 ↑
6 CTGF −1.28 0.302
7 FOS 1.10 0.740
8 HIF1A −1.25 0.088
9 IGFBP3 1.28 0.220

10 IL17A −2.17 0.079
11 IL-1A −13.70 0.000 ↓
12 IL-6 −1.78 0.207
13 MMP2 2.21 0.000 ↑
14 MMP7 1.07 0.886
15 MMP9 1.69 0.090
16 NFKB1 -1.37 0.002 ↓
17 P21 1.54 0.009 ↑
18 PDGFB 1.68 0.002 ↑
19 PHB −1.20 0.073
20 PLCG1 −1.08 0.325
21 TGFB1 −1.08 0.540
22 TIMP1 1.08 0.652
23 TIMP2 1.43 0.007 ↑
24 TNFA −1.96 0.001 ↓
25 TP53 1.99 0.000 ↑
26 VEGFA 1.38 0.227

*where signifi cant
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Increased expression of PDGFB, a potent cell proliferation 
stimulator[28,29] and the resulting decrease of PHB, a negative 
regulator of proliferation,[30,31] may explain the increased 
expression of genes related to the cell cycle. We also observed 
an increase in expression of IGBP3, which according to Ferry, 
regulates bioavailability of another growth factor, IGF.[32]

The heightened expression in responders of genes involved in 
ECM formation and remodeling (Table 2), specifi cally MMP genes, 
may seem to contradict Liu’s fi ndings; Liu suggests that increased 
MMP9 predicts poor DFU healing through its association with 
infl ammation.[33] However, it has also been reported that MMP2 
and MMP9 can be produced by fi broblasts and keratinocytes, 
which are noninfl ammatory cells, and their functions could be 
different in a repair microenvironment.[34]

Healing goes through several phases. At T0, the DFU is in the infl am-
mation phase, when increased expression of MMP genes (which 
degrade components of ECM and basement membrane proteins) 
causes serious tissue damage, suppressing reepithelialization. 

Increased MMP expression 
thus implies a poor prognosis 
for ulcer healing. At T1, when 
there is decreased expres-
sion of infl ammatory genes 
and formation of granulation 
tissue, increased expression 
of MMP genes could suggest 
that healing is at a more ad-
vanced stage, because MMP 
acts to remodel the scar tis-
sue being formed,[35] and 
thus its increase could be 
interpreted differently than as 
proposed by Liu.[33]

The decreased expression 
of TGFB1 and CTGF, which 
stimulate expression of genes 
related to ECM formation, 
is paradoxical,[36,37] and 
could be due to the fact that 
both genes are expressed 
transiently, with maximum 
expression in early healing.

[38,39] At T0, there is infl ammation and therefore there should 
be heightened expression of TGFB1 and CTGF. At T1, there is 
resolution of infl ammation and healing is in the proliferation and 
remodeling phase. Therefore, one might well expect a relative 
decrease in TGFB1 and CTGF gene expression at T1. 

One limitation of this study is that analysis of gene expression 
was performed with biopsies at only two points in the ulcer heal-
ing process, insuffi cient to detect early expression of genes. De-
spite this, and limited sample size, our results offer a clearer view 
of transcriptional activity induced by Heberprot-P in responders 
with DFU.

CONCLUSION
Our fi ndings suggest that Heberprot-P’s DFU healing action is 
mediated through changes in genetic expression that reduce hy-
poxia, infl ammation and oxidative stress, and increase cell prolif-
eration, collagen synthesis and ECM remodeling. The kinetics of 
expression of two genes related to ECM formation needs further 
exploration.

Figure 1: Heberprot-P mechanisms of action
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