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Spatial epidemiology of bat-borne rabies  
in Colombia 

To the Editor: 
In their article, “Geographic distribution of wild 

rabies risk and evaluation of the factors associated 
with its incidence in Colombia, 1982–2010,” Brito and 
colleagues (1) analyzed the spatial distribution of bat-
borne rabies in Colombia and showed an association 
of occurrence of rabies outbreaks with climatic ten-
dencies. The authors also identified risk clusters for 
rabies based on modeled potential distributions. While 
we appreciate this work, which fills knowledge gaps 
regarding the epidemiology of vampire-borne rabies in 
Latin America, we are also  concerned because some of 
the data presented merits re-evaluation and correction.

The distribution of rabies in Colombia was mo-
deled using an ecological niche modeling approach. 
The authors analyzed its distribution with respect to 
15 climatic variables, using all available occurrences 
in model calibration. Model evaluation, a critical issue 
if modeling results are to be incorporated in public 
health decision making, was thus limited in scope and 
strength. Our goal herein is to evaluate the quality, 
quantity, and distribution of rabies occurrences data 
and effectiveness of the environmental data used by 
Brito and colleagues. We based our analyses on the 
data used in and provided by the article.

First, Brito and colleagues used all available 
occurrence points in model calibration. Generally, 
however, clusters of occurrences can lead to overfit-
ting models to specific environments in specific areas 
(2). To avoid biases in model calibration, we therefore 
used single occurrences per cell—indeed, in some ca-
ses, multiple occurrences grouped within single cells 
in the environmental layers used by the authors. This 
step left 2 008 of the original 2 330 occurrences. This 
minor correction reduces overfitting, and increased 
area identified as suitable by > 4%. 

Another major concern centers on use of climatic 
variables as environmental information in analyses 
across such restricted extents. Using principal com-
ponents analysis, we found the climatic layers to be 
highly intercorrelated: indeed, just three principal 
components summarized > 99% of variance among the 
15 climatic layers analyzed by Brito and colleagues. We 
compared models calibrated with respect to that same 
climatic information against those based on remotely 
sensed data (monthly Normalized Difference Vegeta-
tion Index [NDVI] data sets for October 1992 – Septem-
ber 1993 0.01° resolution), which provide finer spatial 
resolution and less need for interpolation. Indeed cli-
mate data showed environmental homogeneity across 

broad areas, with spatial lags of > 350 km, whereas 
remotely-sensed data offered a richer and more de-
tailed environmental characterization: 11 principal 
components were required to summarize > 99% of 
overall variance, and spatial lags were only < 250 km 
(Figure 1). The contrast in detail available from these 
two data sources is evident in Figure 2.

Brito and colleagues subdivided available data 
at random for calibration versus evaluation of their 
model, and used approaches that weight presence 
and absence data equally (2). We evaluated model 
predictions more rigorously, with spatial subdivision 
of occurrences into calibration and evaluation areas, 
and using evaluation tools that emphasize presence in-
formation (2, 3). Models calibrated based on presence 

FIGURE 1. Variogram plot of spatial autocorrelation based on 
500 random points from the respective first principal compo-
nent of climate and remotely-sensed environmental data sets. 
Vertical axis is semivariance for climate (black dots = 10-4) and 
NVDI (gray dots = 10-1); dashed lines represent sill (horizontal) 
and range (vertical), nugget = 0
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FIGURE 2. Principal component analysis results from climatic 
(left) and NDVI (right) variables in Colombia. Colors represent 
environmental differences
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data only should not be evaluated using presence-
absence methods (4), an issue of particular importance 
in public health. Our re-analysis of the original data 
generated models that were statistically robust in both 
cases (P < 0.05); however, models based on climate 
showed more omission error than models based on 
remotely-sensed data, in spite of climate-based models 
covering more area.

Making these adjustments to methodology, our 
final model corresponded to some degree to that of 
Brito and colleagues (Figure 3). However, our model 
identified potential transmission areas in finer detail: 
the Brito model covered 9.0 x 105 km2 (79%) of Colom-
bia, whereas our model covered 3.9 x 105 km2 (49%). 
Curiously, while identifying areas in finer detail and 
covering less area, our map of risk areas included eight 
municipalities not identified in the Brito model (Alto 
Baudó, Bajo Baudó, La Chorrera, Lloró, Puerto Concor-
dia, Puerto Santander, Quibdó, and Tadó). 

Spatial epidemiology of rabies is still a topic 
in development, with focus on terrestrial reservoirs, 
but standard and tested methodologies are still lack

ing. The smaller, but broader areas identified in our 
analyses result from a combination of more careful 
methodology and interpreting model outputs in the 
framework of biogeography and ecology (2). Spatial 
epidemiology strives to anticipate the spatial behavior 
of disease transmission across landscapes. Ecological 
niche models are designed to anticipate geographic 
distributions of suitable areas for species (2), and thus 
have much to offer in public health (5). Nonetheless, 
application of these methods to disease mapping de-
mands careful design, implementation, and testing, 
particularly in view of the serious nature of diseases 
such as rabies. We encourage future research in zoono-
tic disease mapping to progress via multidisciplinary 
teams that include ecologists, epidemiologists, and 
veterinarians.
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FIGURE 3. Potential distribution of bat-borne rabies in Colom-
bia, according to Brito and colleagues, 2013 (left). Revised 
map (right). Notice that rivers had strong associations with 
outbreak predictions. A threshold of E = 10% was used to 
generate binary maps


