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Abstract
Quantitative ultrasound (QUS) appears to be developing into 
an acceptable, low-cost and readily-accessible alternative to 
dual X-ray absorptiometry (DXA) measurements of bone 
mineral density (BMD) in the detection and management of 
osteoporosis. Perhaps the major difficulty with their wide-
spread use is that many different QUS devices exist that differ 
substantially from each other, in terms of the parameters they 
measure and the strength of empirical evidence supporting 
their use. But another problem is that virtually no data exist 
outside of Caucasian or Asian populations.  In general, heel 
QUS appears to be most tested and most effective. Some, 
but not all heel QUS devices are effective assessing fracture 
risk in some, but not all populations, the evidence being 
strongest for Caucasian females > 55 years old, though some 
evidence exists for Asian females > 55 and for Caucasian and 
Asian males > 70. Certain devices may allow  to estimate the 
likelihood of osteoporosis, but very limited evidence exists 
supporting QUS use during the initiation or monitoring of 
osteoporosis treatment. Likely, QUS is most effective when 
combined with an assessment of clinical risk factors (CRF); 
with DXA reserved for individuals who are not identified 
as either high or low risk using QUS and CRF. However, 
monitoring and maintenance of test and instrument accuracy, 
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Resumen
El ultrasonido cuantitativo (QUS) es una alternativa para la 
detección y manejo de la osteoporosis de bajo costo y uso 
práctico, si se compara con las densitometrías de rayos X de 
doble haz de baja energía (DXA) que determinan densidad mi-
neral ósea (BMD). La mayor dificultad para el uso generalizado 
del QUS por un lado es que existen muchos instrumentos 
que son significativamente diferentes uno del otro y por otro 
en la calidad de la evidencia en que se justifica su empleo, que 
generalmente es insuficiente y/o poco sistematizada. Otro 
problema importante del QUS, es que prácticamente no exis-
te información que no sea la generada en poblaciones asiáticas 
o caucásicas. En general, los estudios de calcáneo realizados 
con QUS son los más utilizados y mejor validados para evaluar 
el riesgo de fracturas en algunas poblaciones. La evidencia 
más grande de su efectividad se conoce para las mujeres 
caucásicas y asiáticas mayores de 55 años e incluso para los 
hombres asiáticos mayores de 70 años. Varios instrumentos 
cuentan con buen sustento científico, que los vuelve confiables 
para establecer un pronóstico preciso e identificar el riesgo 
individual de sufrir fracturas por osteoporosis, sin embargo, 
existe poca evidencia que respalde su uso para iniciar y mo-
nitorear el resultado del tratamiento de la osteoporosis. El 
QUS mejora su efectividad diagnóstica cuando se combina 
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Osteoporosis is a “disease characterized by low 
bone mass and micro-architectural deterioration 

of bone tissue, leading to enhanced bone fragility and 
a consequent increase in fracture risk”.1 Hip fractures 
are especially problematic. In the US, for example, more 
than 250 000 hip fractures occur annually,2-5 at least 90% 
of which are attributed to osteoporosis; women over 70 
years of age are particularly vulnerable.6,7 Those who 
sustain a hip fracture often suffer severe and prolonged 
physical and social limitations:6,8-13 only 15% of patients 
are able to walk without assistance 6 months after the 
event; 50% never return to their previous functional 
state; and roughly 20% require long-term care.14,15 Hip 
fracture patients also experience a 20% increase in 
mortality over the next five years. Even in relatively 
smaller-population countries like Canada, costs to 
governments measure in the billions of dollars annually, 
related both to direct health care costs and insurance.14 
And, as much of a problem hip fractures currently are, 
the numbers almost certainly will increase dramatically 
as an increasing percentage of the population achieves 
older age, with as many as 6.3 million hip fractures 
predicted worldwide, annually, by 2050.16 
 Osteoporosis is a major public health concern in 
Latin America as well, with vertebral osteoporosis 
affecting 12-18% and femoral osteoporosis 8-22% of 
women 50 years and older.17,18 Bone mineral density 
may be lower in Latin American women over 50 than in 
their American counter-parts,19 with osteopenia affect-
ing almost 60% of women ≥ 50.18 In addition, in Latin 
America, up to 362 osteoporosis-related hip fractures 
occur annually per 100 000 persons 50 years and older;17 
vertebral fractures affect almost one in five women over 
50;17,18 and between 17 and 37% of hip fracture sufferers 
die within a year of their fracture.17 The social burden of 
osteoporosis also is high in South and Central America. 

Across 20 Latin American countries, including Mexico, 
direct costs have ranged from $4 500 to $6 000, which 
is higher than the per capita gross incomes of many 
Latin American countries, which range from $410 to 
$7 550.17 
 For a variety of reasons that include the huge impact 
osteoporosis-related fractures have upon individuals 
and society, increased health expectations among se-
niors, and recent advances in the prevention and treat-
ment of osteoporosis, the early detection of osteoporosis 
now is considered essential. Traditionally, measurement 
of bone mineral density (BMD) via dual-energy x-ray 
absorptiometry (DXA) has been the means by which os-
teoporosis is diagnosed and fracture risk estimated.20 In 
1994, the World Health Organization (WHO) published 
a set of diagnostic criteria to define osteoporosis in 
postmenopausal Caucasian women,21 using BMD values 
measured by DXA. These criteria express BMD relative 
to the mean BMD of a healthy young-adult reference 
population, expressed as a T-score, which represents 
the number of standard deviations a measured BMD is 
from the reference population mean. These WHO crite-
ria commonly are applied to BMD measurements at the 
spine, hip, and forearm,22 and define osteoporosis as a 
T-score of -2.5 or less; in other words, a given individual 
is said to have osteoporosis if her or his BMD is more 
than 2.5 standard deviations less than the mean BMD 
of a healthy, young adult. 
 Because of the high socio-economic impact of hip 
fractures and studies which demonstrate that BMD 
measurements at the proximal femur are most strongly 
associated with hip fracture, current clinical treatment 
guidelines for osteoporosis generally are based upon 
DXA measurements of BMD at the hip –at the femoral 
neck, for the hip measured in total, or using both mea-
surements.23 This being said, a variety of problems exist 

precision and reproducibility are essential if QUS devices are 
to be used in clinical practice; and further scientific research in 
non-Caucasian, non-Asian populations clearly is compulsory 
to validate this tool for more widespread use.
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fracture; dual-energy X-ray absorptiometry; evidence-based 
practice

con los resultados de un cuestionario que identifica riesgos 
clínicos. En un escenario ideal, el DXA se debe reservar solo 
para aquellos individuos que no puedan ser identificados de 
manera confiable usando QUS y el cuestionario de riesgos 
clínicos. Si se quiere aceptar a los instrumentos QUS en la 
práctica clínica, para el monitoreo es indispensable asegurar 
y mantener la exactitud, precisión y reproducibilidad de los 
instrumentos y de los técnicos que los utilizan. Se requieren 
más estudios científicos de poblaciones no caucásicas o 
asiáticas para validar el uso generalizado del QUS.

Palabras clave: ultrasonido cuantitativo; osteoporosis; fractura 
por fragilidad; densitometría de rayos X; práctica basada en 
evidencias
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with DXA, which include difficulties extrapolating stan-
dards for hip fracture risk to other skeletal sites, like the 
wrist and lumbar spine. Two other major problems with 
DXA that are especially pertinent in South and Central 
America are (1) its cost, and (2) the rarity of DXA instru-
ments in many localities, especially in poorer and/or 
rural areas and in less developed countries. These two 
latter problems have led many investigators to search 
for some lower-cost and more readily-available alterna-
tive to DXA for the diagnosis of osteoporosis and/or the 
estimation of future risk of fragility fractures; and one 
such alternative that has garnered considerable recent 
attention has been quantitative ultrasound (QUS).

Quantitative ultrasound: General principles

Initially used to detect enemy submarines underwa-
ter during World War II, ultrasonic waves are sound 
waves outside the threshold of human hearing, which 
pass easily through fluid and other tissues, and which 
are altered upon contact with bone, in terms of their 
shape, intensity and speed. Over the years, ultrasonic 
(US) devices have found a diverse array of clinical ap-
plications in medicine, including uses in cardiology 
to assess cardiac size and function and vascular flow, 
obstetrics to assess fetal development, general medicine 
to examine for intra-abdominal and intra-peritoneal 
masses, and rheumatolology and orthopedics to both 
diagnose and treat conditions like bursitis and ten-
donitis. As opposed to qualitative ultrasound, which 
just generates pictures, quantitative ultrasound uses 
ultrasonic waves at lower frequencies to generate 
empirical measurements. 
 With respect to the detection of osteoporosis, QUS 
can be used to measure a variety of parameters that 
pertain to bone density, parameters that are related to 
the velocity and attenuation of US waves as they pass 
through bone. Advantages of QUS over DXA are that 
it is inexpensive, transportable, and ionizing radiation 
free. The low cost and transportability could make 
QUS an especially valuable osteoporosis detection tool 
wherever cost or instrument inaccessibility renders DXA 
difficult or impossible. But does QUS work? Already, 
there is evidence that QUS is as effective as axial DXA 
in predicting hip fractures and all osteoporosis-related 
fractures in elderly women.24-26 Having said this, numer-
ous potential problems still exist with the use of QUS 
for osteoporosis detection. For example, care must be 
exercised interpreting US velocity and attenuation, as 
they are calculated differently depending upon the 
manufacturer and model of the ultrasound device. 
Similarly, there are significant differences between QUS 
instruments from different manufacturers, differences 

that affect the interpretation of results and limit com-
parisons between devices. 

Different QUS devices

QUS devices can be classified into three types, related 
to the form of US transmission used:

1. Trabecular sound transmission is the most com-
monly utilized category of devices, for which the 
most evidence exists supporting its use. It is best 
utilized measuring the heel.24,25 

2. Cortical transverse transmission currently only 
is used in phalanx contact devices;27 to date, little 
evidence supports the use of these devices clinically 
for osteoporosis.

3. Cortical axial transmission presently is being in-
vestigated for use in phalanges, the radius and the 
tibia;27 no clinical application have been proven, 
to date. 

 As just noted, heel devices currently appear to have 
the most clinical applications, with some devices –like 
the GE-Lunar Achilles and the Hologic Sahara– better 
tested and more proven effective than others (table I). 
For these purposes, the recommended parameter of 
interest generally has been the heel stiffness index (SI) 
or the Quantitative index (QUI), which is a composite 
score combining the results of broadband ultrasound at-
tenuation (BUA) and speed of sound (SOS), as measured 
in meters per second.
 The remainder of this paper will review the 
clinical use of QUS in the following settings: 1) the 
prediction of fracture risk; 2) the diagnosis of osteo-
porosis; 3) the initiation of osteoporosis treatment or 
prevention; 4) the monitoring of such treatment; and 
5) osteoporosis case finding. The paper will conclude 
by examining 6) quality assurance and quality control 
issues pertaining to the clinical application of QUS. 

1) Using QUS to predict fracture risk

At the present time, there is satisfactory (cross-sectional 
and/or prospective) evidence that QUS can be used to 
assess fracture risk in some, but not all populations, as 
defined by sex, age and ethnic background.28-96 This is 
particularly true of heel QUS and for hip versus spinal 
fractures. Having said this, because of various method-
ological issues, it is difficult to compare studies. None-
theless, combining the results from 13 studies involving 
9 561 patients,33,39,40,43-45,48,52,58-60,69,79 it is reasonable to 
state that the increase in relative risk observed for each 
standard deviation decrease in stiffness index (SI), 
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measured at the heel using QUS, is roughly 2.0 for the 
hip and spine, and approximately 1.5 for all fractures 
combined. Consequently, heel QUS is much the same as 
DXA BMD, in terms of hip and spine fracture risk per 
standard deviation decrease.97,98

 Although some differences may exist in the ex-
pression of osteoporosis and overall fracture risk in 
Hispanics versus general Caucasians and other ethnic 
populations, 99,100 there is ample empirical evidence that 
the heel QUS stiffness index, using some but not all QUS 
devices, is predictive of hip fracture risk in Caucasian 
and Asian women over age 55, and of any fracture risk 
in Caucasian women > 55 (table II). Weaker evidence 
exists that the heel QUS stiffness index, again using some 
but not all QUS devices, is predictive of hip fracture risk 
in Caucasian and Asian men over age 70; of vertebral 
fracture risk in Caucasian and Asian women over age 55; 
and of any fracture risk in Asian women and Caucasian 
or Asian men > 70. With respect to QUS devices from 
one of the other two categories, phalanx QUS devices 
utilizing cortical transverse transmission might predict 
non-vertebral fracture risk in Caucasian women > 70; 
however, to date, cortical axial transmission devices 
have no proven clinical application. 
 Another practical question is: which QUS device is 
best to use? As indicated in table I, the GE Lunar Achil-
les and the Hologic Sahara are among the best tested 

devices, at the hip, spine and overall, and both seem 
effective for most females; the former may be preferable 
in males. Some evidence exists supporting the use of the 
Norland Cuba Clinical and the IGEA DBM Sonic BP, at 
least among Caucasians. However general results on 
the IGEA DBM Sonic device are not very impressive. 
Consequently, the three heel devices appear to be the 
most reasonable to use, at this time, though further 
testing of these and other devices clearly is necessary.

2) Using QUS to diagnose osteoporosis 

Diagnosing osteoporosis using QUS is less supported 
by evidence and more complicated and problematic 
than assessing fracture risk is. To start with, the T-score 
diagnostic criteria of -2.5, classically used for DXA 
BMD, cannot be applied to QUS without discrepancies 
in the numbers of women diagnosed with osteoporosis. 
This is because there are tremendous variations in QUS 
measurements by skeletal site, and because different 
QUS devices yield different results. If, for example, the 
prevalence of osteoporosis is defined as -2.5 standard de-
viations from the mean threshold for QUS, even within 
the same sample population, different QUS instruments 
and different skeletal sites generate prevalence estimates 
that vary as much as ten-fold; for example, prevalence 
estimates among Caucasian women > 65 have ranged 

Table I

Quantitative ultrasound (Qus) devices currently available

   Ability to assess Ability to assess Ability to assess
    Manufacturer Model hip fracture risk spine fracture risk all fracture risk

GE-medical (Lunar) Achilles Proven in most populations Proven in most populations Proven in most populations

DMS Ubis 3000/5000 Some evidence Some evidence Some evidence

Hologic Sahara Proven in Caucasians Proven in Caucasian females Proven in Caucasians

Norland (McCue) Cuba Clinical Proven in Caucasians Some evidence Proven in Caucasians

IGEA DBM Sonic BP Proven in Caucasian females Proven in Caucasian females Some evidence

BeamMed (Sunlight) Omnisense Some evidence Some evidence Some evidence

Meditech DTU-One No evidence Some evidence Some evidence

Aloka AOS-100 Some evidence No evidence No evidence

Medilink Osteospace      

Quidel Inc. QUS-2      

Ishikawa Seisakusho Ltd. Benus      

Elk Co. CM-100 / 200   No Evidence  

Osteosys Co. Sonost 2000 / 3000      

BMtech21 Co. Osteolmager Plus      

BMtech21 Co. Osteo Pro

Data gleaned from Quantitative Ultrasound (QUS) in the Management of Osteoporosis: The 2007 ISCD Official Positions
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from 4 to 50%.96,101-105 To overcome this dilemma, there 
is a need for pre-defined, device-specific diagnostic 
thresholds. One recommended system suggests calibrat-
ing QUS measurements with DXA results, the latter used 
as the ‘gold standard’, so that an upper QUS threshold 
is set to identify osteoporosis with 90% sensitivity, and a 
lower threshold is set to identify osteoporosis with 90% 
specificity.106,107 A similar approach already has been 
recommended by the UK National Osteoporosis Society 
to define upper and lower thresholds for pDXA,108,109 

the results of which are highly correlated with QUS. 
Using such a system, one could identify osteoporosis 
with high probability in patients whose results fall 
below the lower threshold for QUS, where specificity 
exceeds 90%; between the upper and lower thresholds, 
the diagnosis of osteoporosis would be considered quite 
equivocal, so that another means of measurement, like 
DXA BMD, would be highly recommended; and above 
the upper threshold for QUS, where the sensitivity of a 
value below the threshold is 90%, osteoporosis would 
be deemed unlikely. 
 We, in fact, utilized this approach in 5 954 women 
75 years and older who took part in the EPIDOS Study, 
utilizing the 90% sensitivity threshold for the Achil-
les stiffness index of SI= 78%, and the 90% specificity 
threshold of SI= 57%. Using these cut-off points gener-
ated 11% false positive (FP) and 13% false negative (FN) 
results, which are comparable to the FP and FN rates of 

many other tests. Based upon these results, we believe 
that device-specific heel QUS thresholds for 90% 
sensitivity and 90% specificity in specific populations 
defined by sex, age, and ethnic background, can be 
used to identify individuals who have either a high 
or a low likelihood of osteoporosis, even though only 
limited evidence exists supporting the use of any exist-
ing QUS device for this purpose. Devices that have been 
evaluated include the GE-Lunar Achilles, the Hologic 
Sahara, and the DMS UBIS-5000, each of which uses a 
different measure and different upper and lower likeli-
hood thresholds, as indicated in table III. What can be 
concluded is that, regardless of the QUS device used, 
values that fall between the upper and lower thresholds 
strongly warrant further evaluation using DXA BMD as 
a more definitive test.

3) Using QUS to initiate osteoporosis treatment

Except in patients with a low-energy fracture of the hip 
or spine, when the fracture alone is adequate to require 
treatment, all currently-published guidelines or recom-
mendations for the initiation of osteoporosis treatment 
are based upon DXA BMD values; in no instance, to date, 
are the results of QUS the definitive parameter. Despite 
this, several studies have demonstrated high levels of 
correlation (r ~ 0.90) between heel trabecular sound 
transmission and BMD at matched skeletal sites.110-113 

Moreover, both SOS and BUA, standard QUS measure-
ments, are dependent upon overall bone strength which, 
in turn, is related to bone density, architecture and turn-
over, and the extent of bone mineralization.110,112,114-121 
These factors likely work together to maintain overall 
bone quality and strength, and to prevent fractures and 
other bone failure.110,112,114-121 QUS parameters related 
to heel trabecular transverse transmission are highly 
correlated with bone strength.117,122-129 Consequently, 
it is conceivable that guidelines could be created using 
QUS to guide when to initiate osteoporosis treatment, 

Table II

using Quantitative ultrasound (Qus)
to assess fracture risk

  Population Skeletal Strength
Device studied site studied of evidence

Some, but not all heel QUS devices CF > 55 y/o  Hip Good

Some, but not all heel QUS devices AF > 55 y/o  Hip Fair

Some, but not all heel QUS devices CM > 70 y/o  Hip Fair

Some, but not all heel QUS devices AM > 70 y/o  Hip Fair

Some, but not all heel QUS devices CF > 55 y/o  Spine Good

Some, but not all heel QUS devices AF > 55 y/o  Spine Poor

Some, but not all heel QUS devices CF > 55 y/o  Overall Good

Some, but not all heel QUS devices AF > 55 y/o  Overall Fair

Some, but not all heel QUS devices CM > 70 y/o  Overall Fair

Some, but not all heel QUS devices AM > 70 y/o  Overall Fair

Phalanx cortical transverse

transmission devices CF > 70 y/o  Non-vertebral Fair

CF= Caucasian females; AF= Asian females; CM= Caucasian males; AM= 
Asian males

Table III

using Quantitative ultrasound (Qus) to diagnose 
osteoporosis

    Threshold for Threshold for
  Population high likelihood low likelihood
Device studied of osteoporosis of osteoporosis

GE-Lunar Achilles CF and AF > 65 SI ≤ 57.0 SI > 78

Hologic Sahara CF and AF > 65 QUI ≤ 59.0 QUI > 83

DMS UBIS-5000 CF and AF > 65 BUA ≤ 55.0 BUA > 62

CF= Caucasian females; AF= Asian females
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especially if combined with the use of clinical risk fac-
tors.130 To date, however, no randomized clinical trails 
have been published examining whether individuals 
identified as high risk for fracture by QUS respond to 
treatment. 
 At the present time, published evidence does not 
support using QUS device-specific values to initiate 
osteoporosis treatment in women younger than 65 
years or in men of any age, but some evidence exists 
supporting QUS use in other populations, when DXA 
is not available. These populations include 1) Caucasian 
and 2) Asian women who are between the ages of 65 and 
74 years, exhibit results below the lower specific device 
threshold (i.e. SI ≤ 57.0 with the GE-Lunar Achilles de-
vice), and have at least two clinical risk factors (table IV); 
and 3) Caucasian and 4) Asian women who are 75 years 
or older, exhibit results below the lower specific device 
threshold (i.e. SI ≤ 57.0 with the GE-Lunar Achilles de-
vice), and have at least one clinical risk factor besides 
age. Table IV lists pertinent clinical risk factors that we 
have identified by examining published meta-analyses, 
as well as literature reviews written by Kanis131 and 
Durosier.98 
 Currently, a World Health Organization (WHO) 
task force is developing a model to predict the 10-year 
probability of osteoporosis-related fractures, combining 
femoral neck DXA BMD measurements and CRF. This 
also could be done combining QUS and CRF, using a 
device-specific T-score. QUS-generated high and low 
risk probabilities –for example, SI ≤ 57.0 and > 78, respec-
tively, for the GE-Lunar Achilles device– then could be 
used to decide whether treatment is warranted. Because 
different devices have their own high-and low-probabil-
ity threshold values that all correspond to roughly the 
same two levels of fracture risk, this approach could be 

utilized independently of the measurement instrument 
used. Preliminary results demonstrating the benefits of 
this combined CRF plus technology approach already 
have been published by Hans et al.142

 Unfortunately, whereas QUS and BMD are highly 
correlated in trabecular bone143 and this correlation 
reasonably well understood, the situation is consider-
ably more complex with cortical measurements. Many 
properties influence these measurements, including 
cortical thickness, mineralization, porosity and lamellar 
structure, and it is not clear to what degree these various 
properties contribute to bone strength.144-147 Conse-
quently, QUS devices that measure cortical bone, like the 
cortical transverse transmission devices currently used 
to assess phalanges, and the cortical axial transmission 
devices being investigated for use with phalanges, the 
radius and tibia, cannot be recommended as tools to 
determine the appropriateness of initiating osteoporosis 
treatment at this time.

4) Using QUS to monitor osteoporosis treatment 

At this time, QUS cannot be recommended for the 
monitoring of treatment response in patients with 
osteoporosis, both due to the absence of large-scale, 
randomized, double-blinded and placebo-controlled 
clinical trials (RCT) and the relatively equivocal evi-
dence that has been generated by the studies that have 
been published.148-164 It has been observed that changes 
in heel QUS parameters, especially the stiffness index 
(SI), do mimic the treatment response observed in BMD. 
In two studies involving alendronate, for example, the 
Achilles SI was observed to significantly increase with 
treatment over time.149,150 Clearly, however, further RCT 
are needed to determine if QUS parameters are sensi-
tive enough to change with treatment, if the various 
QUS instruments are sensitive enough to detect these 
changes, and if the precision of these instruments is 
such that repeated measures can be performed without 
excessive ‘noise’. There is some evidence that instru-
ment precision is adequate in the short-term; but what 
about over a longer period of time? What can be said is 
that, if QUS is going to be used to monitor treatment, 
likely the heel devices will be most successful, since 
trabecular measurements appear to be more accurate 
than those that have been achieved with any of the 
cortical devices.

5) Case finding

Case finding involves distinguishing subjects at high-
est or lowest risk for a given disorder, who hence do 
not require further investigation because their disease 

Table IV

clinical risk factors for osteoporosis

for use with Quantitative ultrasound

• Age over 75 years132,133

• Low BMI (<20 kg/m2)132,134,135

• Previous fragility fracture after the age of 50132,135,136

• Maternal history of hip fracture137

• Current smoking138

• Diabetes

• No prior hormone replacement therapy (HRT)135

• Prior use of systemic glucocorticoids135,139

• Fall within the past 12 months135,140

• Use of arms to stand up 3 times from a chair (Missed Chair Test)135,140,141
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status is reasonably well known, from subjects at inter-
mediate risk whose disease status remains equivocal, 
thereby requiring further evaluation. At present, there 
is fair empirical support for the use of heel QUS for 
osteoporosis case finding among Caucasian and Asian 
females who are at least 65 years old. The evidence for 
the use of cortical devices is poor, and for males and 
other ethnic populations generally lacking altogether. 
Nonetheless, we feel that the proposed case-finding 
protocol depicted in figure 1 is reasonable for clinical 
practice, in terms of distinguishing individuals who 
require from those who do not require further evaluation 
of fragility fracture risk.

 To begin, each patient would undergo an assess-
ment to identify any clinical risk factors. Using this 
protocol, patients who are suspected to be at risk for sec-
ondary osteoporosis –for example, because of prolonged 
systemic use of corticosteroids– or who have a clinically-
evident vertebral fracture would proceed directly to 
management deemed appropriate for their condition. 
All others would undergo a heel QUS. Based upon this, 
those whose QUS parameters suggest a low likelihood 
of future fracture would be assigned to receive primary 
prevention, unless they have had a fragility fracture, in 
which case they would undergo DXA BMD. Those for 
whom results indicate an intermediate risk of future 

CRF= clinical risk factors; VF = vertebral fracture; QUS = quantitative ultrasound; 
DXA= dual-energy x-ray absorptiometry; WHO = World Health Organization

figure 1. case-finding protocol

   Women ≥ 65 years old

   CRF
   assessment

  Potential secondary  Clilnical evidence
  osteoporosis?  of VF? 

 Follow appropriate  Heel QUS  Follow appropriate
 medical practice  assessment  medical practice

  Low likelihood Medium likelihood High likelihood
  of osteoporosis of osteoporosis of osteoporosis

  Fragility  <75 yrs
  fracture?  old?

    ≥ 1
    CRF?

   Central DXA
   assessment according
   to WHO criteria

  Primary prevention                                                Treatment initiation

no no

yes yes

yes yes

no no≥ 2
CRF?

no

yes no

                     yes
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fracture, in that they lie between the upper and lower 
thresholds, also would undergo DXA BMD. And those 
patients for whom the risk of future fracture is deemed 
to be high, based upon the results of heel QUS, would 
proceed to treatment if they are ≥ 75 years old and have 
at least one other CRF besides age, or if they are < 75 
and have at least two clinical risk factors. Otherwise, 
they too would proceed to DXA BMD. 
 The primary advantage of this protocol, especially 
in terms of cost, is that it saves performing costly and, 
sometimes relatively inaccessible DXA on all patients. 
In particular, those with a low risk of fracture by QUS 
would avoid DXA unless they have had a fragility 
fracture; and those with a high risk of fracture by QUS 
would avoid DXA if they have at least two CRF, counting 
age. As stated at the outset, this would have particular 
relevance in localities in which access to DXA is scarce 
or too costly to be performed, both of which likely 
apply to the majority of patients in many developing 
countries.

6) QUS quality assurance and quality control

Technically, quality assurance primarily deals with the 
performance of the equipment, whereas quality con-
trol is more heavily grounded in theory and statistics, 
emphasizing the quality of the actual test. For practical 
purposes, however, these two concepts often are treated 
as the same,165 and this paper will not seek to further de-
lineate them. The primary issues of importance are those 
of test/equipment accuracy, precision, and reproduc-
ibility. Accuracy is a measure of how close a provided 
answer or value is to the true answer or value.166 If one 
were to visualize a game of darts, for example, darts 
that hit the bull’s eye are said to be accurate. Precision, 
on the other hand, is a measure of consistency. If five 
darts are thrown, do they all end up close to each other 
(high precision) or widely spread (low precision)?166 
The two concepts, accuracy and precision, are not the 
same. One could have all one’s darts bunched together 
far from the bull’s eye (high precision, low accuracy); 
or one could have all one’s darts widely spread, but all 
equidistant from the bull’s eye, so that the average of 
their positions is near to the center dot (high accuracy, 
low precision). Reproducibility measures how well the 
same test done on the same person or sample yields the 
same result, whether the test is performed by the same 
technician (intra-observer) or a different technician (in-
ter-observer).166 These three parameters are important, 
whether a test is being performed to diagnose disease, 
monitor its course, or identify potential cases. 
 With heel QUS, there are several potential sources 
of in vivo measurement error, which include surround-

ing soft tissue and foot positioning;167-170 soft-tissue 
thickness,171-173 temperature170,174 and composition; the 
quality of sound transmission from the coupling me-
dium to the skin; and properties of the coupling medium 
between the transducers and the skin, whether it be a 
fluid bath or sound transmitting pads.167,170,175-178 One 
of the most important components of QA entails using 
some sort of test object, which can be either a standard 
or phantom,165 to monitor instrument performance 
and make necessary calibrations when measurement 
accuracy begins to stray. A standard is an object of 
known acoustic properties, which does not necessarily 
resemble the anatomy of interest. Conversely, a phan-
tom is designed to emulate the anatomy and acoustic 
properties that exist during in vivo measurements as 
much as possible. With respect to optimizing QUS 
device performance, phantoms are more useful. Un-
fortunately, no universally-applicable phantoms exist. 
Consequently, manufacturer-specific phantoms must 
be used, and measured each day that the respective 
device is used, following the manufacturer’s protocol, 
to detect performance changes that may result from 
component aging or failure. Detection of these changes 
allows both for necessary repairs, and for adjustments 
to specific readings by applying a correction factor to 
patient data.177 Table V provides a brief list of important 
guidelines regarding quality assurance and control:

Summary

To date, no satisfactory evidence exists either supporting 
or refuting the usefulness of quantitative ultrasound in 
Latin populations, so that further research clearly is war-
ranted. Nonetheless, there is enough evidence in other 
populations to suggest that QUS may be an acceptable, 
low-cost and readily-accessible alternative to DXA mea-
surements of BMD in the management of osteoporosis 
in Hispanics. Many different QUS devices exist that are 
quite different in terms of the parameters they measure 
and the strength of empirical evidence supporting their 
use. In general, heel QUS appears to be most tested 
and most effective. Some, but not all heel QUS devices 
are effective assessing fracture risk in some, but not all 
populations, the evidence being strongest for Caucasian 
females > 55 years old, though some evidence exists for 
Asian females > 55 and for Caucasian and Asian males 
> 70. Certain devices may allow for the accurate diag-
nosis of osteoporosis, but very limited evidence exists 
supporting the use of QUS use during the initiation 
or monitoring of osteoporosis treatment. A reasonable 
protocol for osteoporosis case-finding relies upon the 
combined assessment of clinical risk factors and heel 
QUS. However, monitoring and maintenance of test and 
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instrument accuracy, precision and reproducibility are 
paramount to the effective clinical use of QUS. And, as 
stated earlier, there is a huge call for further research in 
non-Caucasian, non-Asian populations.
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