ATUALIDADES / ACTUALITIES

 

"Odds ratio": algumas considerações

 

The odds ratio: some considerations

 

 

Davi Rumel

Do Departamento de Epidemiologia da Faculdade de Saúde Pública da Universidade de São Paulo - Av. Dr. Arnaldo, 715 - 01255 - São Paulo, SP - Brasil

 

 


RESUMO

Tem sido grande o número de estudos retrospectivos e transversais controlados que utilizam o "odds ratio" como medida de intensidade de associação. Visando melhor compreensão do significado desta medida, o "odds ratio" foi comparado com a razão de prevalências; foi estudado o comportamento desta medida em relação a variação amostrai de prevalência do fator de risco nos casos e nos controles; e a importância de expressar o "odds ratio" com o respectivo intervalo de confiança.

Unitermos: "Odds ratio". Inferência. Causalidade. Epidemiologia, métodos.


ABSTRACT

Over the last few years a growing number of retrospective and controlled cross-sectional studies using the odds ratio as a measure of intensity of the association have been published. The objectives of this article are: to compare the odds ratio with the prevalence ratio; to study the behavior of this measure with the sampling variation of the prevalence of the risk factor either in cases or in controls; and to give relevance to the expression of it in terms of confidence interval.

Uniterms: Odds ratio. Inference. Causality. Epidemiology, methods.


 

 

Devido a utilização cada vez maior do "odds ratio" em epidemiologia, apresentam-se a seguir algumas considerações sobre esta medida.

O "odds ratio" é uma medida antiga tendo sido usada por Snow em seu clássico trabalho de identificação do fator de risco da propagação da cólera em Londres, em 18536. É utilizado como medida de associação em estudos caso-controle e em estudos transversais controlados4.

Considerando uma tabela de acordo com a Figura 1, "odds ratio" é igual a ou e por isto é também chamado de razão de produtos cruzados.

 

 

O "odds ratio" em conjunto com o coeficiente de Yule, o risco relativo e o risco atribuível são as medidas de associação mais usadas em pesquisas etiológicas3.

Miettinen5 especificou o "odds ratio" em 3 tipos: "exposure odds ratio (EOR)", "risk odds ratio (ROR)" e "prevelence odds ratio (POR)" em função da exposição ao fator de risco ser num curto (EOR) ou longo período (ROR), ou o número de casos serem prevalentes (POR) e não incidentes (EOR e ROR).

 

CONSIDERAÇÃO 1

O "odds ratio" e a razão de prevalências

Intuitivamente, visando inferências causais, podemos pensar em quantas vezes a prevalência do fator de risco nos casos é maior que a prevalência do fator de risco nos controles, ou seja, conforme a Figura 1: a razão . Esta razão é denominada "prevalence ratio"4 ou ainda "likelihood ratio"2, que neste trabalho denominaremos razão de prevalência (RP).

Por exemplo, comparemos as tabelas A e B na Figura 2.

 

 

Por este raciocínio podemos inferir que o fator de risco A está mais associado com os casos que o fator de risco B e, portanto, tem maior possibilidade de ser causa, como mostram os respectivos RPs.

Façamos um outro raciocínio, o de quantas vezes o risco de ficar doente entre os expostos é maior que o risco de ficar doente entre os não expostos, ou seja, a razão , na Figura 1. Esta razão é denominada de risco relativo (RR) e é medida de associação usada em estudo de coorte. Vamos supor que o grupo controle de 39 pessoas seja amostra representativa de 390 pessoas não doentes. As Tabelas A e B da Figura 3 mostram esta situação:

 

 

O risco de ficar doente entre os expostos da tabela A é bem maior que o risco de ficar doente dos não expostos; isto pode ser expresso quantitativamente pelos respectivos RRs. Por este raciocínio, o fator de risco em A é mais provável de ser causa do que o fator de risco estudado em B, conclusão oposta ao resultado com a razão das prevalências.

Se calcularmos o "odds ratio" , na Figura 2 teremos:

Como podemos observar, o "odds ratio", apesar de ser numericamente maior, acompanha o risco relativo, sendo ainda uma estimativa deste em doenças raras.1

Em estudos transversais e caso-controle o "odds ratio" permite identificar uma possível associação causai. A razão de prevalência pode levar a falsas conclusões.

 

CONSIDERAÇÃO 2

Comportamento do "odds ratio" em função da prevalência do fator de risco.

A equação algébrica do "odds ratio" em função da prevalência do fator de risco no grupo controle, casela b, é a seguinte:

, onde x é a cásela b na forma percentual.

O comportamento do "odds ratio" em função da variação de prevalência do fator de risco do grupo controle é a seguinte:

A expressão gráfica desta função está representada na Figura 4.

 

 

Em compensação a variação do "odds ratio" em função da prevalência do fator de risco no grupo de casos é o inverso. Assim temos:

 

 

A expressão gráfica desta função está representada na Figura 5.

 

 

Como o grupo controle é proveniente de processo de amostragem e portanto sujeito ao acaso, e os casos costumam constituir a totalidade dos mesmos no período em estudo, faremos alguns exemplos numéricos fixando a prevalência do fator de risco nos casos e variando-a nos controles.

A notação é a seguinte:

= prevalência do fator de risco nos casos
= prevalência do fator de risco nos controles
OR = "odds ratio"
= "odds ratio" após variação casual de 1 unidade no grupo controle

Na Figura 6 temos exemplos com a/n1 = 0,15 e variações de b/n2.

 

 

 

Na Figura 7 temos exemplos com a/n1 = 0,92 e variações de b/n2.

 

 

Como podemos observar, o "odds ratio" varia mais quanto maior a prevalência do fator de risco nos casos (a/n1) e menor a prevalência do fator de risco nos controles (b/n2).

Na circunstância do fator de risco ser muito maior nos casos que na população (o grupo controle é uma amostra da população), a simples observação ou o simples estudo descritivo dos casos já identifica fator de risco suspeito. Portanto, tanto faz se o "odds ratio" varia muito ou pouco devido ao acaso, pois ele sempre será grande.

Concluindo, existe uma variação aleatória proveniente do processo de amostragem do grupo controle que afeta a medida "odds ratio", mas é insuficiente para impedir a sua utilização. Esta variação deve ser lembrada como um dos motivos de diferentes estudos sobre as mesmas relações causais, apesar de serem bem conduzidos, apresentarem "odds ratio" discrepantes.

 

CONSIDERAÇÃO 3

O "odds ratio" deve ser expresso com intervalo de confiança.

Os controles são selecionados a partir da população em estudo por processo de amostragem. Toda a amostra por melhor que seja feita está sujeita ao acaso, e é por isto que o "odds ratio" deve ser expresso na forma de intervalo de confiança, calculado a partir de uma margem de erro pré-determinada.

O tamanho da amostra não afeta o "odds ratio", mas afeta seu intervalo de confiança. Aplicando a fórmula de Miettinen5, que parece ser a fórmula mais favorita para o cálculo do intervalo de confiança do "odds ratio", podemos observar que quanto maior a amostra em estudo menor será o intervalo de confiança. Se o objetivo for medir associação positiva entre um possível fator de risco e o evento da doença, o limite inferior do intervalo é o elemento importante. Este deve ser maior que 1 para afirmarmos que em dado intervalo de confiança há associação.

Na Figura 8 temos um exemplo de cálculo do limite inferior do intervalo de confiança do "odds ratio" de acordo com a fórmula de Miettinen: antilog , com 5% de significância, ou seja, Z a = 1,96. Ao dobrar o tamanho da amostra, a associação que era nao significante passa a sê-lo.

 

 

AGRADECIMENTOS

Aos Professores José Maria Pacheco de Souza, Edmundo Juarez, Bruce Duncan e Maria Inês Schmidt pela orientação e estímulo.

 

REFERÊNCIAS BIBLIOGRÁFICAS

1. CORNFIELD, J. A method of estimating comparative rates from clinical data. Aplications to cancer of the lung, beast and cervic. J.Nat.Cancer Inst., 11: 1.268-75,1951.        

2. FEINSTEIN, A.R. Clinical epidemiology. Philadelphia, W.B. Saunders, 1985.        

3. HAMILTON, M.A. Choosing the parameter for 2x2 table or 2x2x2 table analysis. Amer.J.Epidem., 109: 362-75, 1979.        

4. KLEINBAUM, D.G.; KUPPER, L.L. & MORGENSTERN, H. Epidemiologic research. Belmont, Calif., Lifetime Learning Publ., 1982.        

5. MIETTINEN, O.S. Estimability and estimation in case-referent studies. Amer.J.Epidem., 103: 226-35, 1976.        

6. ROJAS, A.R. Epidemilogia. Buenos Aires, Intermédica, 1974.        

 

 

Recebido para publicação em 02/09/1985
Reapresentado em 18/11/1985
Aprovado para publicação em 23/03/1986

Faculdade de Saúde Pública da Universidade de São Paulo São Paulo - SP - Brazil