Abstract
One of the concerns linked to the COVID-19 pandemic is the capacity of health systems to respond to the demand for care for people with the disease. The objective of this study was to create a COVID-19 response Healthcare Infrastructure Index (HII), calculate the index for each state in Brazil, and determine its spatial distribution within and across regions. The HII was constructed using principal component factor analysis. The adequacy of the statistical model was tested using the Kaiser-Meyer-Olkin test and Bartlett’s test of sphericity. The spatial distribution of the HII was analyzed using exploratory spatial data analysis. The data were obtained from DATASUS, the Federal Nursing Council, Ministry of Health, Government Procurement Portal, and the Transparency Portal. The nine states in the country’s North and Northeast regions showed the lowest indices, while the five states from the Southeast and South regions showed the highest indices. Low-low clusters were observed in Amazonas and Pará and high-high clusters were found in Minas Gerais, Rio de Janeiro, São Paulo, and Paraná.
Key words:
COVID-19; Health system infrastructure; Brazil
Introduction
Coronaviruses are a group of easily transmitted viruses common to humans, other mammals and birds that cause respiratory, hepatic, enteric, and neurological diseases. Six species of coronavirus are known to cause illness in humans, four of which - 229E, OC43, NL63, and HKU1 - are prevalent and normally cause cold symptoms. The other two - the severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV)11 Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8):727-733. - are of animal origin and associated with often fatal diseases. SARS is rapidly progressive infectious disease22 Tsang KW, Ho PL, Ooi GC, Yee WK, Wang T, Chan-Yeung M, Lam WK, Seto WH, Yam LY, Cheung TM, Wong PC, Lam B, Ip MS, Chan J, Yuen KY, Lai KN. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348(20):1975-1983..
In December 2019, various health facilities in China reported a number of patients with pneumonia of unknown cause. This outbreak was associated with exposures in a seafood market in Wuhan, in the Hubei province of China. On December 31, 2019, the Chinese Center for Disease Control and Prevention sent a team to monitor and investigate the epidemiological and etiological origin of this disease in conjunction with the Chinese health authorities in Wuhan and the Hubei province. The Chinese authorities identified a new type of coronavirus in the early stages of an outbreak whose main symptoms were fever and a cough with respiratory distress11 Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8):727-733.,33 World Health Organization (WHO). Novel coronavirus: China, 2020 [Internet]. [acessado 2020 Jun 26]. Disponível em: http://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/.
On January 30, 2020, the World Health Organization (WHO) declared a Public Health Emergency of International Concern due to the rapid rise in the number of cases and deaths in China caused by the new coronavirus 2019 (COVID-19). Thereafter, the WHO recommended a number of health measures, including horizontal isolation in affected regions, temperature checks at airports and subways, and the use of surveillance cameras to help map the path of contamination. However, the virus continued to spread and, on March 11, 2020, the WHO declared the outbreak to be a global pandemic44 Organização Pan-Americana da Saúde (OPAS). Folha informativa - COVID-19: doença causada pelo novo coronavírus, 2020 [Internet]. [acessado 2020 Jul 04]. Disponível em: https://www.paho.org/bra/index.php?option=com_content&view=article&id=6101:covid19&Itemid=875
https://www.paho.org/bra/index.php?optio... .
By July 3, 2020, 10,710,005 global cases of COVID-19 and 517,877 deaths had been recorded. Forty days later, on August 12, these numbers had risen by 48% and 31%, respectively, to 20,624,316 cases and 749,421 deaths. The first case in Brazil was recorded on 26 February 2020 in São Paul and the first death was notified on March 17 in the same state44 Organização Pan-Americana da Saúde (OPAS). Folha informativa - COVID-19: doença causada pelo novo coronavírus, 2020 [Internet]. [acessado 2020 Jul 04]. Disponível em: https://www.paho.org/bra/index.php?option=com_content&view=article&id=6101:covid19&Itemid=875
https://www.paho.org/bra/index.php?optio... . By July 3, 2020, Brazil had recorded 1,539,081 cases and 63,174 deaths. By August 12, these numbers had risen by 52% and 40%, respectively, to 3,180,758 cases and 104,528 deaths55 Brasil. Ministério da Saúde (MS). Coronavírus - COVID 19: O que você precisa saber [Internet]. 2020 [acessado 2020 Jun 26]. Disponível em: https://coronavirus.saude.gov.br/
https://coronavirus.saude.gov.br... ,66 Brasil. Ministério da Saúde (MS). COVID-19 no Brasil [Internet]. 2020 [acessado 2020 Jul 4]. Disponível em: http://susanalitico.saude.gov.br/#/dashboard/
http://susanalitico.saude.gov.br/#/dashb... , making Brazil the country with the world’s second-highest COVID-19 death toll and number of cases.
Several countries, including Brazil, have made efforts to expand the capacity of their health systems to provide the care needed for patients with respiratory complications arising from COVID-19. According to Brazil’s national health information system, DATASUS77 Brasil. Ministério da Saúde (MS). DATASUS. Tabnet [Internet]. [acessado 2020 Jun 11]. Disponível em: https://datasus.saude.gov.br/informacoes-de-saude-tabnet/
https://datasus.saude.gov.br/informacoes... , Brazil has 6,237 hospitals, 5,298 of which are general hospitals and 939 specialized hospitals. The country has 446,503 hospital beds, 314,725 (70.49%) of which are SUS beds (SUS is the acronym in Portuguese for Brazil’s public health service, the Sistema Único de Saúde) and 131,778 (29.51%) private. The majority of beds are concentrated in the Southeast Region (40.57%), followed by the Northeast (27.12%), South (16.54%), Center-West (8.5%), and North (7.27%). However, Silva88 Silva HB. Mais Médicos e o Médicos pelo Brasil, 2019 [Internet]. [acessado 2020 Jun 26]. Disponível em: http://www.portal.cfm.org.br/index.php? option=com_content&view=article&id=28381: 2019-08-09-19-00-50&catid=46:artigos&Itemid=18
http://www.portal.cfm.org.br/index.php? ... points out that Brazil’s hospital system is far from being able to guarantee broad-ranging quality care to the population due to a range of structural deficiencies, including the shortage of beds, medicines, and physical facilities and inadequate staffing levels and poor working terms and conditions.
The assessment of available resources and health system capacity in a given region or country is vital for the response to COVID-19, providing a valuable tool for policymakers making decisions on the allocation of public spending on the control of the spread of the coronavirus and treatment of infected persons.
This study therefore sought to create a COVID-19 response Healthcare Infrastructure Index (HII), calculate the index for each state and determine its spatial distribution within and across regions.
Methodology
This section is divided into three parts. In the first part, we present the study data and respective sources. In the second part, we provide a brief outline of the multivariate model used in the study. Finally, we explain the spatial analysis of the data.
Study data
A number of variables capable of capturing information on the following dimensions of health system capacity at state level were used to construct the COVID-19 HII: physical healthcare structure; number of health workers; the existence of strategic COVID-19 devices; and financial resources allocated to healthcare.
The data were obtained from DATASUS99 Brasil. Ministério da Saúde (MS). DATASUS. Leitos de internação [Internet]. [acessado 2020 Jun 26]. Disponível em: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?cnes/cnv/leiintbr.def
http://tabnet.datasus.gov.br/cgi/deftoht... , the Federal Nursing Council (COFEN)1010 Conselho Federal de Enfermagem (COFEN). Enfermagem em números [Internet]. [acessado 2020 Jun 12]. Disponível em: http://www.cofen.gov.br/enfermagem-em-numeros
http://www.cofen.gov.br/enfermagem-em-nu... , Health Surveillance Secretariat (SVS), Government Procurement Portal1111 Portal de Compras. Painel de compras COVID-19 [Internet]. 2020 [acessado 2020 Jun 11]. Disponível em: https://www.comprasgovernamentais.gov.br/index.php/transparencia/60-transparencia/1313-transparencia-dos-dados-de-compras-para-o-covid-19
https://www.comprasgovernamentais.gov.br... , Ministry of Health1212 Barsil. Ministério da Saúde (MS). Painel de leitos e insumos [Internet]. 2020 [acessado 2020 Jun 7]. Disponível em: https://covidinsumos.saude.gov.br/paineis/insumos/painel.php
https://covidinsumos.saude.gov.br/painei... , and Transparency Portal1313 Portal da Transparência. Saúde: Distribuição das despesas com saúde por localidade [Internet]. 2020 [acessado 2020 Jun 10]. Disponível em: http://www.portaltransparencia.gov.br/funcoes/10-saude?ano=2020
http://www.portaltransparencia.gov.br/fu... ,1414 Portal da Transparência. Recursos transferidos [Internet]. 2020 [acessado 2020 Jun 10]. Disponível em: http://www.portaldatransparencia.gov.br/transferencias.
http://www.portaldatransparencia.gov.br/... . Chart 1 shows the dimensions, variables and respective sources.
The data were standardized, which according to Fávero and Belfiore1515 Fávero LP, Belfiore P. Manual de análise de dados. Rio de Janeiro: Elsevier; 2017. involves subtracting the mean and dividing by the standard deviation for each observed value of the variable.
The following subsections describe the multivariate statistical method (principal component factor analysis) used to create the index and techniques employed to analyze the spatial distribution of the HII.
Multivariate statistical model
As mentioned above, the HII was constructed using principal component factor analysis. According to Fávero and Belfiore1515 Fávero LP, Belfiore P. Manual de análise de dados. Rio de Janeiro: Elsevier; 2017., this technique allows the researcher to generate uncorrelated factors through linear combinations of initial variables. According to Manly1616 Manly BFJ. Métodos estatísticos multivariados: uma introdução. 3ª ed. Porto Alegre: Bookman; 2008., factor analysis makes it possible to reduce large numbers of variables into a much smaller set of factors, as follows:
Where: X p is the ith observed variable; l p is the product of the square root of the eigenvalues of the correlation matrix multiplied by the eigenvectors of the square root of the correlations; F j is the ith factor; and εp is the ith linear combination of the principal components Z j+1 through Z p .
Generalized factor analysis was applied to the 21 study variables, using the factor scores to construct the HII. Based on Mingoti1717 Mingoti SA. Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada. Belo Horizonte: Editora UFMG; 2005., the procedures adopted can be represented as follows:
Where: HII m is the Healthcare Infrastructure Index of the ith state; σ22 Tsang KW, Ho PL, Ooi GC, Yee WK, Wang T, Chan-Yeung M, Lam WK, Seto WH, Yam LY, Cheung TM, Wong PC, Lam B, Ip MS, Chan J, Yuen KY, Lai KN. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348(20):1975-1983. is the variance explained by factor j; p is the number of selected factors;
Before proceeding, it was necessary to measure the adequacy of the factor analysis methodology. For this purpose, we performed the Kaiser-Meyer-Olkin (KMO) test and Bartlett’s test of sphericity. According to Fávero and Belfiore1515 Fávero LP, Belfiore P. Manual de análise de dados. Rio de Janeiro: Elsevier; 2017., these tests are represented by the following two equations:
Where: l and c are the rows and columns, respectively, of the correlation matrix; ρ are the model variables; and φ are the higher order correlation coefficients of the model variables. KMO values vary between 0 and 1, where the closer the value is to 1, the more adequate the model. According to the literature, values of more than 0.6 indicate adequacy.
According to Fávero and Belfiore1515 Fávero LP, Belfiore P. Manual de análise de dados. Rio de Janeiro: Elsevier; 2017., Bartlett’s test of sphericity is represented as follows:
Where: n is the sample size; k is the number of variables; and |D| is the module of the determinant of the correlation matrix of the variables that make up the index. The model is adequate when the null hypothesis that the correlation matrix is an identity matrix is rejected.
Since the values frequently vary between 0 and 1, after confirming the adequacy of the method and generation of factors, the results of the index are standardized as shown by the following equation:
Where: HII min and HII máx are the minimum and maximum calculated indices, respectively. Standardization converts the maximum and minimum values to 1 and 0, respectively, where the closer the value is to 1, the better the COVID-19 response healthcare infrastructure in the respective state. To generate the factors, we used VARIMAX orthogonal rotation of factors, which, according to Hair Jr. et al.1818 Hair Jr JF, Black WC, Babin BJ, Anderson RE, Tatham RL. Análise multivariada de dados. Porto Alegre: Bookman Editora; 2009., provides a clearer understanding of how the variables are associated and how much this characteristic positively or negatively reflects each factor.
After performing orthogonal rotation, confirming the adequacy of the statistical model and constructing the index, it was possible to assess the spatial distribution of the HII and check for the existence of clusters, using Exploratory Spatial Data Analysis (ESDA).
Spatial analysis
To assess the spatial distribution of the HII across states, we used global and local Moran’s I. According to Almeida1919 Almeida E. Econometria espacial. Campinas: Alínea; 2012., global Moran’s I measures the similarity between values at spatial locations. Positive results indicate similarity, whereby locations with high incidence of the observed variable and/or phenomenon are surrounded by locations with similarly high values, while negative values for I indicate dissimilar values, whereby high incidence locations are surrounded with locations with low values. Local Moran’s I is used to assess the existence of spatial clusters of the observed phenomenon.
According to Almeida1919 Almeida E. Econometria espacial. Campinas: Alínea; 2012., global Moran’s I is expressed as follows:
Where: n is the number of regions indexed by i and j; z are the standardized variables; W is the spatial weights matrix; S o is equal to Ʃ i Ʃ j w ij , indicating that the inputs of the spatial weights matrix w will be added; and Wz is the mean of the standardized variables in the neighboring locations. To proceed with the spatial analysis, the result must reject the null hypothesis of spatial randomness or non-existence of clusters.
Local Moran’s I was used to determine the existence of spatial clusters of IEs m within the different states, expressed by Anselin2020 Anselin L. Local Indicators of Spatial Association - LISA. Geographical Analysis 1995; 27(2):93-115. as follows:
According to Almeida1919 Almeida E. Econometria espacial. Campinas: Alínea; 2012., local Moran’s I (LISA) assumes that the sum of the local indicators is proportionately equal to the global Moran’s I.
Results
The results of the KMO and Bartlett’s tests (0.7459 and 1,715.09, respectively) confirmed the adequacy of the principal component factor analysis, meaning it was possible to proceed with the extraction of common factors. Using varimax rotation, which maximizes factor variance, it was possible to obtain the factors that make up the . The factor selection criterion was an eigenvalue of more than 1, resulting in the selection of three factors, as shown in Table 1.
Together, the three extracted factors explain 95.42% of the total variance of the data. The correlation coefficients for the 21 variables and their respective factors were obtained using orthogonal rotation. The factor loadings and the generated factors are shown in Table 1. The literature1717 Mingoti SA. Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada. Belo Horizonte: Editora UFMG; 2005. suggests a cut-off value of at least 0.50 for the selection of factor loadings.
The first factor was shown to be related to the following variables: number of high complexity outpatient facilities (x1); number of medium complexity outpatient facilities (x2); number of primary outpatient facilities (x3); number of high complexity hospitals (x4); number of medium complexity hospitals (x5); number of nursing assistants (x7); number of nurses (x8); number of doctors (x9); number of nursing technicians (x10); number of PCR tests (x11); number of rapid tests (x12); number of non-SUS hospital beds (x13); number of SUS hospital beds (x14); number of ventilators (x15); number of non-SUS adult ICUs (x16); number of SUS adult ICUs (x17); distribution of health spending (x19); and amount transferred to municipal governments (x21). Factor 1 therefore represents the physical and human resources components of general operational structure.
The second factor was related to the number of medium complexity hospitals (x5), number of health centers (x6) and amount transferred directly to the state government (x20). This factor represents initial medical care access mechanisms and the source of direct state resources. Finally, the third factor was related to number of PCR tests (x11), procurement via auction, waiver and exemption from competitive bidding for COVID-19 response (x18), and amount transferred directly to the state government (x20). The third factor was therefore related to the context of the COVID-19 pandemic, contributing to explain the functioning of hospitals in the states in response to the increased demand for healthcare.
After the formation of the factors, we proceeded to standardize the results in order to form the index, calculating the index for each state. The highest HII was found in the State of São Paulo (0.781795), followed by Minas Gerais (0.352699), both located in the Southeast Region. The lowest indices were registered in Amapá (0.045114) and Roraima (0.045722), in the county’s North Region. Table 2 shows the HII m for each state.
The indices suggest that the spatial distribution of health system infrastructure across the country is uneven, with only the State of São Paulo achieving an index higher than 0.50. Regional disparities are evident, with higher indices being concentrated in the Southeast Region and lower indices in the North Region, where there have been reports of overburdening in the health and funeral systems caused by COVID-192121 Silva SG. Pandemia e afetações das emoções: reflexões sobre a realidade da Covid-19 no estado do Amapá. Rev Bras Sociol Emoção 2020; 19(55):113-124..
To help observe the clustering of the in the states, Figure 1 shows the spatial distribution of the indices in the different locations across the country. These results were obtained using hierarchical clustering, revealing the formation of six groups constructed by performing Ward’s linkage with the application of Euclidean distance. These groups were obtained using the indices presented in Table 2.
Figure 1 shows the groups where the darker the tone the higher the index, showing that states of Amapá (0.045114), Roraima (0.045722), Acre (0.045823), Rondônia (0.06500), Sergipe (0.067870), and Tocantins (0,057963) make up the lowest index group (Group 1).
Group 2 is made up of the following states: Amazonas (0.080364), Pará (0.118611), Maranhão (0.109346), Piauí (0.07648), Rio Grande do Norte (0.085771), Paraíba (0.094154), Alagoas (0.076142), Espírito Santo (0.09662), Mato Grosso (0.096832), Mato Grosso do Sul (0.082707), and the Federal District (0.11034).
Group 3 includes the states of Pernambuco (0.16726), Ceará (0.147787), Goiás (0.149312), and Santa Catarina (0.156648), while Group 4 is made up of Bahia (0.218160), Paraná (0.233039) and Rio Grande do Sul (0.229693).
The highest HII m were found in Group 5 (Rio de Janeiro, 0.33239; and Minas Gerais, 0.352699) and Group 6 (São Paulo, 0.781795).
Although the spatial distribution of the index in the different states is dissimilar, it is necessary to check for the existence of patterns of spatial dependence. For this purpose, we used global Moran’s I and local Moran’s I.
To detect spatial autocorrelation, we calculated univariate global Moran’s I using the queen and rook contiguity criteria. Both calculations showed similar results. Based on these results, the null hypothesis of spatial randomness was rejected, thus confirming spatial autocorrelation in the HII m data.
After confirming spatial dependence, it was possible to analyze local patterns of spatial association in the data using local Moran’s I. The results showed the formation of low-low clusters in the North Region, high-high clusters in the Southeast Region, and low-high clusters in Mato Grosso do Sul, as shown in Figure 2. The statistical significance level was set at 5%.
Low-low clusters mean that the states with a low HII m are surrounded by other states with low HII m . For high-high clusters, the opposite is the case, with states with better health infrastructure being surrounded by other states with similarly high levels of infrastructure. In turn, low-high clusters indicate states with low HII m surrounded by other states with high HII m .
Low-low clusters were found in Amazonas and Pará, while high-high clusters were observed in the South and Southeast regions (Minas Gerais, Rio de Janeiro, São Paulo, and Paraná). As mentioned above, Mato Grosso do Sul formed a low-high cluster.
Discussion
Our findings reveal that access to healthcare across Brazil is uneven and unequal, as shown by the gap between the first and last placed states (São Paulo, HII m = 0.781795; and Amapá, HII m = 0.045114, respectively). It is possible to note that some states are grouped with non-neighboring states from other regions. The results also show differences in health infrastructure within regions.
It is important to highlight that the states of Groups 1 and 2 - North Region and part of the Northeast and Center-West regions - have low levels of health infrastructure in comparison to the other groups. This pattern is also observed in the statistically significant spatial clusters. Specific attention should be paid to Amazonas and Pará, which form a low-low cluster, suggesting weaker health system capacity, especially in critical situations with sharp spikes in demand.
The situation of locations with a low level of health infrastructure may be aggravated by the distance between these states and those with higher , especially in the case of transfer of critically ill patients to other health facilities for example. In an analysis hospital bed availability for the COVID-19 response in Rio Grande do Sul, Smolski et al.2222 Smolski FMS, Battisti IDE, Soder RM, Rotta E, Kucharski KW. Disponibilidade de leitos hospitalares e ventilação mecânica no Rio Grande do Sul: desafios no enfrentamento da COVID-19 Internet]. 2020 [acessado 2020 Jun 25]. Disponível em: https://www.researchgate.net/publication/341651488_Disponibilidade_de_leitos_hospitalares_e_ventilacao_mecanica_no_Rio_Grande_do_Sul_desafios_no_enfrentamento_da_COVID-19
https://www.researchgate.net/publication... concluded that the majority of the population depends on transfers to services concentrated in regional referral centers. The authors also found inequalities in the distribution and provision of hospital beds and ventilators and some health regions lacked adult ICU beds. Pedrosa and Albuquerque2323 Pedrosa NL, Albuquerque NLS. Análise Espacial dos Casos de COVID-19 e leitos de terapia intensiva no estado do Ceará, Brasil. Cien Saude Colet 2020; 25(Supl. 1):2461-2468. also investigated the distribution of COVID-19 cases and ICU beds allocated to the treatment of the disease in the State of Ceará.
Adequate infrastructure for responding to peaks in demand such as those experienced during the COVID-19 pandemic is fundamental for combating disease mortality. In this regard, Moreira2424 Moreira RS. COVID-19: unidades de terapia intensiva, ventiladores mecânicos e perfis latentes de mortalidade associados à letalidade no Brasil. Cad Saude Publica 2020; 36(5):e00080020. showed that health regions with the highest COVID-19 mortality rates were located in areas with a shortage of ICU beds and ventilators concentrated mainly in parts of the Northeast, Southeast, and South regions of the country.
According to Noronha et al.2525 Noronha KVMS, Guedes GR, Turra CM, Andrade MV, Botega L, Nogueira D, Calazans JÁ, Carvalho L, Servo L, Ferreira MF. Pandemia por COVID-19 no Brasil: análise da demanda e da oferta de leitos hospitalares e equipamentos de ventilação assistida segundo diferentes cenários. Cad Saude Publica 2020; 36(6):e00115320., the pressure added to the health system by the demand for healthcare triggered by the COVID-19 pandemic exposes healthcare inequalities, showing that capacity is insufficient, despite the presence of the private sector. This structure should be reinforced with, for example, the creation of field hospitals combined with strategies designed to reduce the spread of the disease.
The highest HIIs were found in the Southeast Region, more specifically in São Paulo. It is important to underline that, according to the National Supplementary Health Agency (ANS)2626 Agência Nacional de Saúde Suplementar (ANS). Beneficiários [Internet]. [acessado 2020 Jun 29]. Disponível em: http://www.ans.gov.br/anstabnet/cgi-bin/dh?dados/tabnet_br.def
http://www.ans.gov.br/anstabnet/cgi-bin/... , in March 2020, the Southeast Region also accounted for the highest number of private health insurance plans, followed by the South, Northeast, Center-West, and North regions. Moreover, data from the 2008 Household Budget Survey shows that average household spending on healthcare and health insurance was highest in the Southeast Region, followed by the South, Center-West, Northeast, and North regions2727 Instituto Brasileiro de Geografia e Estatística (IBGE). Sistema IBGE de Recuperação Automática [Internet]. [acessado 2020 Jun 28]. Disponível em: https://sidra.ibge.gov.br
https://sidra.ibge.gov.br... .
It is also important to highlight that health infrastructure alone does not necessarily reflect the vulnerability of the state to pandemics like COVID-19, as other factors like the speed at which the virus spreads, isolation indices, mask use and other transmission reduction measures, number of inhabitants, and population density may influence the number of cases and deaths. These factors provide several directions for future research.
It is hoped that the findings of this study will contribute to public policies designed to expand health infrastructure in Brazil in order to reduce regional disparities in access to healthcare. Study limitations include the limited number of studies on COVID-19 and national trends given that the pandemic is a recent phenomenon and it is still difficult to measure its effects, thus restricting the scope of discussion of this topic. Other limitations relate to infrastructure recently implemented in response to the pandemic, making it difficult to include all relevant information in the study. In addition, it is important to bear in mind that health infrastructure is used not only for the COVID-19 response, but also for the prevention, diagnosis and treatment of other diseases. The findings should therefore be interpreted with caution, given that the health system should be prepared to tackle a range of other diseases. Future research should expand on this study using local time series data and dynamic indices.
References
- 1Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8):727-733.
- 2Tsang KW, Ho PL, Ooi GC, Yee WK, Wang T, Chan-Yeung M, Lam WK, Seto WH, Yam LY, Cheung TM, Wong PC, Lam B, Ip MS, Chan J, Yuen KY, Lai KN. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348(20):1975-1983.
- 3World Health Organization (WHO). Novel coronavirus: China, 2020 [Internet]. [acessado 2020 Jun 26]. Disponível em: http://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
- 4Organização Pan-Americana da Saúde (OPAS). Folha informativa - COVID-19: doença causada pelo novo coronavírus, 2020 [Internet]. [acessado 2020 Jul 04]. Disponível em: https://www.paho.org/bra/index.php?option=com_content&view=article&id=6101:covid19&Itemid=875
» https://www.paho.org/bra/index.php?option=com_content&view=article&id=6101:covid19&Itemid=875 - 5Brasil. Ministério da Saúde (MS). Coronavírus - COVID 19: O que você precisa saber [Internet]. 2020 [acessado 2020 Jun 26]. Disponível em: https://coronavirus.saude.gov.br/
» https://coronavirus.saude.gov.br - 6Brasil. Ministério da Saúde (MS). COVID-19 no Brasil [Internet]. 2020 [acessado 2020 Jul 4]. Disponível em: http://susanalitico.saude.gov.br/#/dashboard/
» http://susanalitico.saude.gov.br/#/dashboard - 7Brasil. Ministério da Saúde (MS). DATASUS. Tabnet [Internet]. [acessado 2020 Jun 11]. Disponível em: https://datasus.saude.gov.br/informacoes-de-saude-tabnet/
» https://datasus.saude.gov.br/informacoes-de-saude-tabnet - 8Silva HB. Mais Médicos e o Médicos pelo Brasil, 2019 [Internet]. [acessado 2020 Jun 26]. Disponível em: http://www.portal.cfm.org.br/index.php? option=com_content&view=article&id=28381: 2019-08-09-19-00-50&catid=46:artigos&Itemid=18
» http://www.portal.cfm.org.br/index.php? option=com_content&view=article&id=28381: 2019-08-09-19-00-50&catid=46:artigos&Itemid=18 - 9Brasil. Ministério da Saúde (MS). DATASUS. Leitos de internação [Internet]. [acessado 2020 Jun 26]. Disponível em: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?cnes/cnv/leiintbr.def
» http://tabnet.datasus.gov.br/cgi/deftohtm.exe?cnes/cnv/leiintbr.def - 10Conselho Federal de Enfermagem (COFEN). Enfermagem em números [Internet]. [acessado 2020 Jun 12]. Disponível em: http://www.cofen.gov.br/enfermagem-em-numeros
» http://www.cofen.gov.br/enfermagem-em-numeros - 11Portal de Compras. Painel de compras COVID-19 [Internet]. 2020 [acessado 2020 Jun 11]. Disponível em: https://www.comprasgovernamentais.gov.br/index.php/transparencia/60-transparencia/1313-transparencia-dos-dados-de-compras-para-o-covid-19
» https://www.comprasgovernamentais.gov.br/index.php/transparencia/60-transparencia/1313-transparencia-dos-dados-de-compras-para-o-covid-19 - 12Barsil. Ministério da Saúde (MS). Painel de leitos e insumos [Internet]. 2020 [acessado 2020 Jun 7]. Disponível em: https://covidinsumos.saude.gov.br/paineis/insumos/painel.php
» https://covidinsumos.saude.gov.br/paineis/insumos/painel.php - 13Portal da Transparência. Saúde: Distribuição das despesas com saúde por localidade [Internet]. 2020 [acessado 2020 Jun 10]. Disponível em: http://www.portaltransparencia.gov.br/funcoes/10-saude?ano=2020
» http://www.portaltransparencia.gov.br/funcoes/10-saude?ano=2020 - 14Portal da Transparência. Recursos transferidos [Internet]. 2020 [acessado 2020 Jun 10]. Disponível em: http://www.portaldatransparencia.gov.br/transferencias
» http://www.portaldatransparencia.gov.br/transferencias - 15Fávero LP, Belfiore P. Manual de análise de dados. Rio de Janeiro: Elsevier; 2017.
- 16Manly BFJ. Métodos estatísticos multivariados: uma introdução. 3ª ed. Porto Alegre: Bookman; 2008.
- 17Mingoti SA. Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada. Belo Horizonte: Editora UFMG; 2005.
- 18Hair Jr JF, Black WC, Babin BJ, Anderson RE, Tatham RL. Análise multivariada de dados. Porto Alegre: Bookman Editora; 2009.
- 19Almeida E. Econometria espacial. Campinas: Alínea; 2012.
- 20Anselin L. Local Indicators of Spatial Association - LISA. Geographical Analysis 1995; 27(2):93-115.
- 21Silva SG. Pandemia e afetações das emoções: reflexões sobre a realidade da Covid-19 no estado do Amapá. Rev Bras Sociol Emoção 2020; 19(55):113-124.
- 22Smolski FMS, Battisti IDE, Soder RM, Rotta E, Kucharski KW. Disponibilidade de leitos hospitalares e ventilação mecânica no Rio Grande do Sul: desafios no enfrentamento da COVID-19 Internet]. 2020 [acessado 2020 Jun 25]. Disponível em: https://www.researchgate.net/publication/341651488_Disponibilidade_de_leitos_hospitalares_e_ventilacao_mecanica_no_Rio_Grande_do_Sul_desafios_no_enfrentamento_da_COVID-19
» https://www.researchgate.net/publication/341651488_Disponibilidade_de_leitos_hospitalares_e_ventilacao_mecanica_no_Rio_Grande_do_Sul_desafios_no_enfrentamento_da_COVID-19 - 23Pedrosa NL, Albuquerque NLS. Análise Espacial dos Casos de COVID-19 e leitos de terapia intensiva no estado do Ceará, Brasil. Cien Saude Colet 2020; 25(Supl. 1):2461-2468.
- 24Moreira RS. COVID-19: unidades de terapia intensiva, ventiladores mecânicos e perfis latentes de mortalidade associados à letalidade no Brasil. Cad Saude Publica 2020; 36(5):e00080020.
- 25Noronha KVMS, Guedes GR, Turra CM, Andrade MV, Botega L, Nogueira D, Calazans JÁ, Carvalho L, Servo L, Ferreira MF. Pandemia por COVID-19 no Brasil: análise da demanda e da oferta de leitos hospitalares e equipamentos de ventilação assistida segundo diferentes cenários. Cad Saude Publica 2020; 36(6):e00115320.
- 26Agência Nacional de Saúde Suplementar (ANS). Beneficiários [Internet]. [acessado 2020 Jun 29]. Disponível em: http://www.ans.gov.br/anstabnet/cgi-bin/dh?dados/tabnet_br.def
» http://www.ans.gov.br/anstabnet/cgi-bin/dh?dados/tabnet_br.def - 27Instituto Brasileiro de Geografia e Estatística (IBGE). Sistema IBGE de Recuperação Automática [Internet]. [acessado 2020 Jun 28]. Disponível em: https://sidra.ibge.gov.br
» https://sidra.ibge.gov.br - 28Instituto Brasileiro de Geografia e Estatística (IBGE).Malhas municipais 2019 [Internet]. [acessado 2020 Jun 6]. Disponível em: https://www.ibge.gov.br/geociencias/organizacao-do-territorio/15774-malhas.html?=&t=downloads
» https://www.ibge.gov.br/geociencias/organizacao-do-territorio/15774-malhas.html?=&t=downloads
Publication Dates
- Publication in this collection
04 Dec 2020 - Date of issue
Dec 2020
History
- Received
16 July 2020 - Accepted
13 Sept 2020 - Published
15 Sept 2020