Prevalence and simultaneity of cardiovascular risk factors in elderly participants of a population-based study in southern Brazil

Paulo Adão de Medeiros Francieli Cembranel Thamara Hübler Figueiró Bianca Bittencourt de Souza Danielle Ledur Antes Diego Augusto Santos Silva Carla Zanelatto Eleonora d’Orsi About the authors

ABSTRACT:

Objective:

To investigate the prevalence of simultaneity of cardiovascular risk factors and their association with socio-demographic characteristics in older adults in Southern Brazil.

Methods:

Cross-sectional study with 1.553 elderly participants of the EpiFloripa study in Florianópolis-SC. The risk factors evaluated were: Inadequate fruit and vegetable consumption, insufficient leisure-time physical activity, alcohol consumption and smoking. The construction of the outcome was performed by combining all of the factors mentioned and then categorized. Bivariate and multivariate analyzes were performed using the Poisson regression.

Results:

It was found that 57.6% of the elderly coexist with the simultaneity of cardiovascular risk factors. The combination of inadequate fruit and vegetable consumption and insufficient leisure-time physical activity was the most prevalent. The highest prevalence observed in women and men was the insufficient leisure-time physical activity and inadequate fruit and vegetable consumption of 46.4 and 28.1%, respectively. The observed prevalence of the four factors was higher among men (2.5%), whereas for women (0.3%). Men were 11.0% more likely to accumulate risk factors compared to women. And each additional year of schooling represents 4.0% less probability of accumulating cardiovascular risk factors.

Conclusions:

The differences between the simultaneity of risk factors and sociodemographic aspects should be considered in the approach for older adults, both at the individual level and in the construction of public policies.

Keywords:
Risk factors; Life style; Cardiovascular diseases; Aged; Cluster analysis

INTRODUCTION

Cardiovascular diseases (CVD) constitute the main group of noncommunicable chronic diseases (NCDs) and the leading cause of morbidity and mortality in the Brazilian population and around the world, representing about one third of global deaths11. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Plano de ações estratégicas para enfrentamento das doenças crônicas não transmissíveis (DCNT) no Brasil 2011-2022. Brasília: Ministério da Saúde; 2011.,22. Ribeiro AG, Cotta RMM, Ribeiro SMR. A promoção da saúde e a prevenção integrada dos fatores de risco para doenças cardiovasculares. Ciênc Saúde Coletiva 2012; 17(1): 7-17. http://dx.doi.org/10.1590/S1413-81232012000100002
http://dx.doi.org/10.1590/S1413-81232012...
,33. Abubakar II, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385(9963): 117-71. https://doi.org/10.1016/S0140-6736(14)61682-2
https://doi.org/10.1016/S0140-6736(14)61...
. In addition, these diseases have a major impact on the economy, health systems and social security44. Oliveira EL, Westphal GA, Mastroeni MF. Características clínico-demográficas de pacientes submetidos a cirurgia de revascularização do miocárdio e sua relação com a mortalidade. Rev Bras Cir Cardiovasc 2012; 27(1): 52-60. http://dx.doi.org/10.5935/1678-9741.20120009
http://dx.doi.org/10.5935/1678-9741.2012...
.

Aging-related physiological changes associated with risk behaviors have been related to the high prevalence of CVD in the elderly55. Yazdanyar A, Newman AB. The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clin Geriatr Med 2009; 25(4): 563-77. https://doi.org/10.1016/j.cger.2009.07.007
https://doi.org/10.1016/j.cger.2009.07.0...
. Despite its increasing incidence with advancing age, the World Health Organization (WHO) estimates that most of these morbidities could be prevented, and that three-quarters of cardiovascular mortality can be decreased with lifestyle changes aimed at controlling risk factors66. Simão AF, Précoma DB, Andrade JP, Correa Filho H, Saraiva JF, Oliveira GM. I cardiovascular prevention guideline of the Brazilian Society of Cardiology - executive summary. Arq Bras Cardiol 2014; 102(5): 420-31. https://dx.doi.org/10.5935%2Fabc.20140067
https://dx.doi.org/10.5935%2Fabc.2014006...
,77. World Health Organization. 65th World Health Assembly closes with new global health measures [Internet]. World Health Organization; 2012 [acesso em 1º nov. 2017]. Disponível em: Disponível em: https://www.who.int/mediacentre/news/releases/2012/wha65_closes_20120526/en/
https://www.who.int/mediacentre/news/rel...
.

Most risk factors established in the literature are: blood pressure, high blood glucose, dyslipidemia, being overweight, and abdominal obesity, all of which can be controlled by changing inappropriate eating habits, physical inactivity, alcohol abuse and smoking66. Simão AF, Précoma DB, Andrade JP, Correa Filho H, Saraiva JF, Oliveira GM. I cardiovascular prevention guideline of the Brazilian Society of Cardiology - executive summary. Arq Bras Cardiol 2014; 102(5): 420-31. https://dx.doi.org/10.5935%2Fabc.20140067
https://dx.doi.org/10.5935%2Fabc.2014006...
,77. World Health Organization. 65th World Health Assembly closes with new global health measures [Internet]. World Health Organization; 2012 [acesso em 1º nov. 2017]. Disponível em: Disponível em: https://www.who.int/mediacentre/news/releases/2012/wha65_closes_20120526/en/
https://www.who.int/mediacentre/news/rel...
,88. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364(9438): 937-52. https://doi.org/10.1016/S0140-6736(04)17018-9
https://doi.org/10.1016/S0140-6736(04)17...
,99. O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 2010; 376(9735): 112-23. https://doi.org/10.1016/S0140-6736(10)60834-3
https://doi.org/10.1016/S0140-6736(10)60...
,1010. Boden-Albala B, Sacco RL, Lee HS, Grahame-Clarke C, Rundek T, Elkind MV, et al. Metabolic syndrome and ischemic stroke risk: Northern Manhattan Study. Stroke 2008; 39(1): 30-5. https://doi.org/10.1161/STROKEAHA.107.496588
https://doi.org/10.1161/STROKEAHA.107.49...
,1111. Sociedade Brasileira de Cardiologia. II Diretrizes brasileiras em cardiogeriatria. Arq Bras Cardiol 2010; 95(3 Supl. 2): 1-112. http://dx.doi.org/10.1590/S0066-782X2010002100001
http://dx.doi.org/10.1590/S0066-782X2010...
,1212. Xavier HT, Izar MC, Faria Neto JR, Assad MH, Rocha VZ, Sposito AC, et al. V Diretriz brasileira de dislipidemia e prevenção da aterosclerose. Arq Bras Cardiol 2013; 101(4 Supl. 1): 1-36..

However, in addition to assessing the prevalence and defining strategies to combat these factors in isolation, it is important to consider how they work together. Studies show that the interaction of these factors is more worrisome than just their sum when it comes to health problems, due to their synergistic effect1313. Ebrahim S, Montaner D, Lawlor DA. Clustering of risk factors and social class in childhood and adulthood in British women’s heart and health study: cross sectional analysis. BMJ 2004; 328(7444): 861. https://doi.org/10.1136/bmj.38034.702836.55
https://doi.org/10.1136/bmj.38034.702836...
,1414. Pereira JC, Barreto SM, Passos VMA. O Perfil de Saúde Cardiovascular dos Idosos Brasileiros Precisa Melhorar: Estudo de Base Populacional. Arq Bras Cardiol 2008; 91(1): 1-10. http://dx.doi.org/10.1590/S0066-782X2008001300001
http://dx.doi.org/10.1590/S0066-782X2008...
,1515. Chou KL. The Prevalence and Clustering of Four Major Lifestyle Risk Factors in Hong Kong Chinese Older Adults. J Aging Health 2008; 20(7): 788-803. https://doi.org/10.1177/0898264308321082
https://doi.org/10.1177/0898264308321082...
,1616. Ferreira CCC, Peixoto MRG, Barbosa MA, Silveira ÉA. Prevalência de fatores de risco cardiovascular em idosos usuários do Sistema Único de Saúde de Goiânia. Arq Bras Cardiol 2010; 95(5): 621-8. http://dx.doi.org/10.1590/S0066-782X2010005000141
http://dx.doi.org/10.1590/S0066-782X2010...
,1717. Yang Q, Cogswell ME, Flanders WD, Hong Y, Zhang Z, Loustalot F, et al. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. JAMA 2012; 307(12): 1273-83. https://doi.org/10.1001/jama.2012.339
https://doi.org/10.1001/jama.2012.339...
,1818. D’amico MM, Souza RKT. Simultaneidade de Fatores de Risco Cardiovascular Controláveis: Estudo de Base Populacional. Rev Bras Cardiol 2014; 27(5): 318-26..

Aging populations are heterogeneous, and their risk factor analyses differ from those for younger people. Their characteristics are influenced by historical events that mark the different birth cohorts, survival biases and gender differences1919. Freitas MPD, Loyola Filho AI, Lima-Costa MF. Birth cohort differences in cardiovascular risk factors in a Brazilian population of older elderly: the Bambuí cohort study of aging (1997 and 2008). Cad Saúde Pública 2011; 27(Supl. 3): S409-17. https://doi.org/10.1590/s0102-311x2011001500011
https://doi.org/10.1590/s0102-311x201100...
. The development of these diseases affects individuals differently, with less frequency and severity in those with healthier trajectories and daily life. Therefore, effective CVD prevention will only be achieved by improving the overall risk profile of individuals1414. Pereira JC, Barreto SM, Passos VMA. O Perfil de Saúde Cardiovascular dos Idosos Brasileiros Precisa Melhorar: Estudo de Base Populacional. Arq Bras Cardiol 2008; 91(1): 1-10. http://dx.doi.org/10.1590/S0066-782X2008001300001
http://dx.doi.org/10.1590/S0066-782X2008...
.

In Brazil, few studies1414. Pereira JC, Barreto SM, Passos VMA. O Perfil de Saúde Cardiovascular dos Idosos Brasileiros Precisa Melhorar: Estudo de Base Populacional. Arq Bras Cardiol 2008; 91(1): 1-10. http://dx.doi.org/10.1590/S0066-782X2008001300001
http://dx.doi.org/10.1590/S0066-782X2008...
,1616. Ferreira CCC, Peixoto MRG, Barbosa MA, Silveira ÉA. Prevalência de fatores de risco cardiovascular em idosos usuários do Sistema Único de Saúde de Goiânia. Arq Bras Cardiol 2010; 95(5): 621-8. http://dx.doi.org/10.1590/S0066-782X2010005000141
http://dx.doi.org/10.1590/S0066-782X2010...
,1919. Freitas MPD, Loyola Filho AI, Lima-Costa MF. Birth cohort differences in cardiovascular risk factors in a Brazilian population of older elderly: the Bambuí cohort study of aging (1997 and 2008). Cad Saúde Pública 2011; 27(Supl. 3): S409-17. https://doi.org/10.1590/s0102-311x2011001500011
https://doi.org/10.1590/s0102-311x201100...
,2020. Barreto SM, Passos VMA, Firmo JOA, Guerra HL, Vidigal PG, Lima-Costa MF. Hypertension and clustering of cardiovascular risk factors in a community in southeast Brazil-The Bambui Health and Ageing Study. Arq Bras Cardiol 2001; 77(6): 576-81. https://doi.org/10.1590/s0066-782x2001001200008
https://doi.org/10.1590/s0066-782x200100...
,2121. Oliveira JAS. Aglomerados de Fatores de Risco Cardiovascular e Síndrome da Fragilidade em Idosos [tese]. Salvador: Universidade Federal da Bahia; 2010.,2222. Moreira AD, Gomes CS, Felisbino-Mendes MS, Gomes FSL, Meléndez JGV, Velásquez G. Prevalência e aglomeração de fatores de risco cardiometabólicos em população idosa residente em área rural. Rev Min Enferm 2014; 18(4): 801-7.,2323. Covatti CF, Santos JM, Vicente AAS, Greff NT, Vicentini AP. Fatores de risco para doenças cardiovasculares em adultos e idosos de um hospital universitário. Nutr Clín Diet Hosp 2016; 36(1): 24-30. https://doi.org/10.12873/361covatti
https://doi.org/10.12873/361covatti...
,2424. Cruz MF, Ramires V, Wendt A, Mielke IG, Martinez-Mesa J, Wehrmeister FC. Simultaneidade de fatores de risco para doenças crônicas não transmissíveis entre idosos da zona urbana de Pelotas, Rio Grande do Sul, Brasil. Cad Saúde Pública 2017; 33(2): e00021916. http://dx.doi.org/10.1590/0102-311x00021916
http://dx.doi.org/10.1590/0102-311x00021...
have sought to explore the overlapping nature of cardiovascular risk factors in the elderly population, and not all of them are population-based. There is no consensus in their findings with regard to the sociodemographic profile that is more likely to accumulate these factors.

Thus, the lack of this type of information was the motivation behind this study, because identifying more susceptible groups allows for more effective preventive actions. It is believed that the analysis of risk factors simultaneously can support the construction of more specific public policies for the elderly population, as it is known that many behaviors manifest specific combination patterns. Therefore, the aim of this study was to investigate the prevalence of simultaneity of modifiable cardiovascular risk factors (CVRF) and their association with sociodemographic characteristics in elderly participants of a population-based study in Florianópolis, Santa Catarina.

METHOD

This is a cross-sectional population-based study conducted with data from the Epidemiological Study of Health Conditions of the Elderly of Florianópolis, Santa Catarina (EpiFloripa Elderly 2009-2010), which aims to understand the living and health conditions of the elderly population of Florianópolis. In 2009, Florianopolis, which is the capital of the state of Santa Catarina, had a total population aged 60 and over corresponding to 10.8% of the population,2525. Instituto Brasileiro de Geografia e Estatística. Estimativas populacionais residentes, em 1º de julho de 2009, segundo os municípios [Internet]. Brasília; 2009 [acessadoem 8 ago. 2017]. Disponível em: Disponível em: http://www.ibge.gov.br/home/estatistica/populacao/estimativa2009/POP2009_DOU.pdf
http://www.ibge.gov.br/home/estatistica/...
had high life expectancy at birth25 and a high Municipal Human Development Index (HDI-M)2626. Programa das Nações Unidas para o Desenvolvimento. O Índice de Desenvolvimento Humano Municipal Brasileiro: Série Atlas do Desenvolvimento Humano no Brasil. Programa das Nações Unidas para o Desenvolvimento; 2013. 93 p..

The sample size calculation considered an expected prevalence of 50%, a 4% error, a 95% confidence interval (95%CI), an estimated cluster design effect equal to 2, plus 20% for losses and 15% to test associations. The sample was selected by clusters in two stages. In the first stage, the urban census tracts of the municipality were selected and then, in the second, the households were selected according to methodology that has been previously detailed in other studies2727. Confortin SC, Schneider IJC, Antes DL, Cembranel F, Ono LM, Marques LP, et al. Condições de vida e saúde de idosos: resultados do estudo de coorte EpiFloripa Idoso. Epidemiol Serv Saúde 2017; 26(2): 305-17. http://dx.doi.org/10.5123/s1679-49742017000200008
http://dx.doi.org/10.5123/s1679-49742017...
,2828. Schneider IJC, Confortin SC, Bernardo CO, Bolsoni CC, Antes DL, Pereira KG, et al. Estudo de coorte EpiFloripa Idoso: métodos, aspectos operacionais e estratégias de seguimento. Rev Saúde Pública 2017; 51: 104. http://dx.doi.org/10.11606/s1518-8787.2017051006776
http://dx.doi.org/10.11606/s1518-8787.20...
. Data collection took place between September 2009 and June 2010 by trained interviewers using a structured questionnaire in the form of face-to-face interviews by means of Personal Digital Assistants (PDA). The scientific rigor in obtaining reliable data was insured through the construction of a data collection manual, interviewer training, a pilot study, consistency analysis and data quality control.

For the outcome, modifiable risk factors for CVD were defined as those at the first causal level: insufficient fruit, legume, and vegetable (FLV) intake, insufficient physical activity during leisure time, alcohol abuse, and smoking. Thus, the dependent variable resulted from the sum of the presence of these factors. Therefore, a combinatorial analysis was performed and a simultaneity score was created to evaluate the possible combinations. The score ranged from 0 to 4 (0 = no exposure; 1 = one-factor exposure; 2 = two-factor exposure; 3 = three-factor exposure; 4 = four-factor exposure).

Insufficient intake of FLV was assessed by the questionnaire that is used by the Surveillance of Risk Factors and Protection for Chronic Diseases through Telephone Surveys (VIGITEL)2929. Moura EC, Morais Neto OL, Malta DC, Moura L, Silva NN, Bernal R, et al. Vigilância de fatores de risco para doenças crônicas por inquérito telefônico nas capitais dos 26 estados brasileiros e no Distrito Federal (2006). Rev Bras Epidemiol 2008: 11(Supl. 1): 20-37. http://dx.doi.org/10.1590/S1415-790X2008000500003
http://dx.doi.org/10.1590/S1415-790X2008...
,3030. Brasil. Vigitel 2014: Vigilância de fatores de Risco para doenças crônicas por inquérito telefônico. Brasil; 2015. 135 p.. Individuals who reported a daily intake ≤ 3 times/day of fruits and ≤ 2 times/day of legumes and vegetables on at least 5 days a week were considered to have a risk factor. This variable was collected as such due to the difficulties of transmitting the concept of portions to the interviewees.

Insufficient physical activity during leisure time was verified by the long version of the International Physical Activity Questionnaire (IPAQ) and categorized as: insufficiently active (0 to 149 minutes of physical activity/week) and physically active (≥ 150 minutes of physical activity/week)3131. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003; 35(8): 1381-95. https://doi.org/10.1249/01.MSS.0000078924.61453.FB
https://doi.org/10.1249/01.MSS.000007892...
.

Alcohol abuse was assessed in accordance with the first three questions in The Alcohol Use Disorders Identification Test (AUDIT) questionnaire,3232. Babor TF, Higgins-Biddle JC, Saunders JB, Monteiro MG. The alcohol use disorders identification test: guidelines for use in primary care. 2ª ed. Genebra: World Health Organization; 2001. and was defined as the consumption of three or more servings of alcohol on a typical day, or five or more servings of alcohol at once (episodic overuse or binge drinking). Non-consumption or moderate alcohol consumption were grouped and only the abuse category was considered to be a risk.

Smoking was assessed by the question: “Do you smoke or have you ever smoked cigarettes?” and the participants were classified as a non-smoker, a former smoker or a current smoker. For the purposes of the analysis, the non-smoker and former smoker categories were grouped and the current smoker category was considered to be at risk.

The independent variables used were: gender, age (in categories and in complete years), self-reported skin color2525. Instituto Brasileiro de Geografia e Estatística. Estimativas populacionais residentes, em 1º de julho de 2009, segundo os municípios [Internet]. Brasília; 2009 [acessadoem 8 ago. 2017]. Disponível em: Disponível em: http://www.ibge.gov.br/home/estatistica/populacao/estimativa2009/POP2009_DOU.pdf
http://www.ibge.gov.br/home/estatistica/...
(white and non-white), education (in categories and in completed years of study), who you live with (alone, spouse, other family members), monthly household income per capita in quartiles (1st quartile: ≤ R $ 327.50; 2nd quartile: R $ 327.50 to 700; 3rd quartile: R $ 700 to 1,500; 4th quartile:> R $ 1,500) and current paid work (yes, no).

An analysis of clusters was performed in order to evaluate concurrency between FRCV according to previous studies2424. Cruz MF, Ramires V, Wendt A, Mielke IG, Martinez-Mesa J, Wehrmeister FC. Simultaneidade de fatores de risco para doenças crônicas não transmissíveis entre idosos da zona urbana de Pelotas, Rio Grande do Sul, Brasil. Cad Saúde Pública 2017; 33(2): e00021916. http://dx.doi.org/10.1590/0102-311x00021916
http://dx.doi.org/10.1590/0102-311x00021...
,3333. Schuit AJ, Van Loon AJ, Tijhuis M, Ocké M. Clustering of lifestyle risk factors in a general adult population. Prev Med 2002; 35(3): 219-24. https://doi.org/10.1006/pmed.2002.1064
https://doi.org/10.1006/pmed.2002.1064...
. Cluster studies are recommended because the combination of behaviors does not demonstrate a linear and constant increase in CVD risk. The risk from the combinations can be increased or remain constant, as each behavior has an independent effect on CVD88. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364(9438): 937-52. https://doi.org/10.1016/S0140-6736(04)17018-9
https://doi.org/10.1016/S0140-6736(04)17...
,33. Abubakar II, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385(9963): 117-71. https://doi.org/10.1016/S0140-6736(14)61682-2
https://doi.org/10.1016/S0140-6736(14)61...
. Thus, the expected prevalence (E) of each combination was calculated by multiplying the individual probability of each behavior based on the observed prevalence (O). And when the risk factor was absent among the combinations, it was multiplied by the inverse of its observed prevalence (1 - O). Therefore, when the ratio of observed to expected (O / E) was greater than 1, the existence of an aggregation or cluster was indicated and assumed to have occurred independently.

Absolute and relative frequencies were calculated, as well as prevalence and 95%CI of each variable in isolation, and in relation to the outcome. Bivariate analysis was performed by applying Pearson’s χ2 test. A multivariate analysis was performed using Poisson regression, in which all independent variables were included in the adjusted model in order to evaluate the effect of all the exposure variables on outcome3434. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3ª ed. Filadélfia: Lippincott Williams & Wilkins; 2008.. The variables of age and education level were used continuously in the analyzes because it is easier to communicate their results in terms of public health. Observed prevalence and expected prevalence analyses were performed using Microsoft Excel 2010 and the other analyses were conducted using the Stata/SE 13.0 statistical program (Stata Corp., College Station, United States).

The project was approved by the Human Research Ethics Committee of the Universidade Federal de Santa Catarina (protocol No. 352/2008) and the participants were asked to sign an Informed Consent Form (ICF).

RESULTS

Of the 1,911 eligible individuals, 1,705 elderly people were interviewed. Of these, elderly people without complete data for all of the selected variables were excluded, and there were losses due to the construction of the outcome variable.

Thus, 1,553 elderly individuals were analyzed, with a mean age of 70.7 years old (± 8.0 years). The sample consisted predominantly of female, white, married women, aged between 60 and 69 years old, who had a low level of education, according to Table 1. Only 8.6% of the sample had no CVRF and 1.1% presented all factors concomitantly. However, 57.7% of these elderly individuals had at least 2 CVRF and thus lived with the simultaneous risk factors for CVD.

Table 1.
Sample distribution and simultaneity of modifiable risk factors for cardiovascular disease according to independent variables. EpiFloripa Idoso. Florianópolis, SC, 2009-2010 (n = 1,553).

The bivariate analysis of sociodemographic variables with the outcome showed significant differences between the proportions of the CVRF groups in relation to sex, age and education.

In the total sample, insufficient physical activity during leisure time was the most prevalent CVRF (69.1%). Among men, the most prevalent CVRF was insufficient intake of FVC (67.2%) and among women, insufficient physical activity during leisure time (73.4%). Alcohol abuse and smoking were more prevalent among men. Still, there was a statistically significant difference between sexes in relation to all CVRF (p ≤ 0.001), except for insufficiency in FLV consumption (p = 0.972) (Figure 1).

Figure 1.
Prevalence of risk factors for cardiovascular disease in the total sample and according to sex. EpiFloripa Idoso. Florianópolis, SC, 2009-2010 (n = 1,553).

Concerning risk factor combinations, Table 2 shows the results of the prevalence of observed and expected aggregate factors of the four risk factors, stratified by sex. The highest prevalence observed in both women and men was insufficient physical activity with insufficient intake of FLV, being 46.4 and 28.1%, respectively. The observed prevalence of the 4 simultaneous factors was higher among men (2.5%) when compared to women (0.3%). The absence of the 4 risk factors was similar between the sexes, with a prevalence of 8.8% among women and 8.1% among men.

Table 2.
Prevalence of combinations of the four risk factors for cardiovascular disease, stratified by sex. EpiFloripa Idoso. Florianópolis, SC, 2009-2010 (n = 1,553).

In both sexes, aggregation (O / E> 1.0) of the 4 risk factors was observed. For the aggregation of 3 factors, insufficient physical activity during leisure time, smoking, and alcohol abuse (O / E = 4.00.) Insufficient consumption of FLV, smoking, and alcohol (O / E = 3.75) among women stand out. Among men, insufficient consumption of FLV, smoking and alcohol (O / E = 2.85) stand out. The highest aggregations of 2 risk factors were observed between smoking and alcohol consumption (6.66) and insufficient physical activity with insufficient FLV consumption (1.05) for women. Among men, the only combination that presented a cluster was the insufficient physical activity with insufficient consumption of FLV (1.14).

In the multivariate analysis, according to Table 3, it was demonstrated that elderly men were 11.0% more likely to accumulate risk factors simultaneously compared to females. In addition, each additional year of study provided 4.0% less probability, showing that education is a protective factor against concurrent CVRD accumulation in this population.

Table 3.
Crude and adjusted analysis between the simultaneity of cardiovascular risk factors and sociodemographic variables in the elderly. EpiFloripa. Florianópolis, SC, 2009-2010 (n = 1,553).

DISCUSSION

The WHO and the Brazilian Society of Cardiology have set a goal of reducing NCDs by 25% by the year 202566. Simão AF, Précoma DB, Andrade JP, Correa Filho H, Saraiva JF, Oliveira GM. I cardiovascular prevention guideline of the Brazilian Society of Cardiology - executive summary. Arq Bras Cardiol 2014; 102(5): 420-31. https://dx.doi.org/10.5935%2Fabc.20140067
https://dx.doi.org/10.5935%2Fabc.2014006...
,3535. Beaglehole R, Bonita R, Horton R, Adams C, Alleyne G, Asaria P, et al. Priority actions for the non-communicable disease crisis. Lancet 2011; 377(9775): 1438-47. https://doi.org/10.1016/S0140-6736(11)60393-0
https://doi.org/10.1016/S0140-6736(11)60...
. This study stands out for being one of the few national population-based to research the prevalence and simultaneity of risk factors for the development of these morbidities among the elderly population.

It is worth noting that the high level of simultaneity of factors in almost 60% of the sample. Furthermore, only 8.6% of the elderly did not present any risk behavior. Still, the occurrence of simultaneity and risk factor combinations showed differences between the sexes and education level proved to be an important protective factor.

Gender inequalities in the standard of self-care are already established in the literature and indicate that females pay more attention to their health. Women access services more and consider their health more negatively, reporting a higher number of chronic diseases. Historically, the values that are part of male culture include health risk behaviors that consider men to be invulnerable to illness. Thus, when they seek health services, they access specialized care and already have more lethal complications and diseases3636. Fernandes LCL, Bertoldi AD, Barros AJD. Utilização dos serviços de saúde pela população coberta pela Estratégia de Saúde da Família. Rev Saúde Públic 2009; 43(4): 595-603. http://dx.doi.org/10.1590/S0034-89102009005000040
http://dx.doi.org/10.1590/S0034-89102009...
,3737. Bastos GAN, Del Duca GF, Hallal PC, Santos IS. Utilização de serviços médicos no sistema público de saúde no Sul do Brasil. Rev Saúde Pública 2011; 45(3): 475-84. http://dx.doi.org/10.1590/S0034-89102011005000024
http://dx.doi.org/10.1590/S0034-89102011...
,3838. Levorato CD, Mello LM, Silva AS, Nunes AA. Fatores associados à procura por serviços de saúde numa perspectiva relacional de gênero. Ciênc Saúde Coletiva 2014; 19(4): 1263-74. http://dx.doi.org/10.1590/1413-81232014194.01242013
http://dx.doi.org/10.1590/1413-812320141...
.

In this study, the most prevalent CVRF was insufficient physical activity during leisure time (69.1%), with a difference between the sexes. In most studies conducted with the elderly, there was a lower percentage of low levels of physical activity, ranging between 37.6 and 60.1%1414. Pereira JC, Barreto SM, Passos VMA. O Perfil de Saúde Cardiovascular dos Idosos Brasileiros Precisa Melhorar: Estudo de Base Populacional. Arq Bras Cardiol 2008; 91(1): 1-10. http://dx.doi.org/10.1590/S0066-782X2008001300001
http://dx.doi.org/10.1590/S0066-782X2008...
,1515. Chou KL. The Prevalence and Clustering of Four Major Lifestyle Risk Factors in Hong Kong Chinese Older Adults. J Aging Health 2008; 20(7): 788-803. https://doi.org/10.1177/0898264308321082
https://doi.org/10.1177/0898264308321082...
,1616. Ferreira CCC, Peixoto MRG, Barbosa MA, Silveira ÉA. Prevalência de fatores de risco cardiovascular em idosos usuários do Sistema Único de Saúde de Goiânia. Arq Bras Cardiol 2010; 95(5): 621-8. http://dx.doi.org/10.1590/S0066-782X2010005000141
http://dx.doi.org/10.1590/S0066-782X2010...
,2121. Oliveira JAS. Aglomerados de Fatores de Risco Cardiovascular e Síndrome da Fragilidade em Idosos [tese]. Salvador: Universidade Federal da Bahia; 2010.,2424. Cruz MF, Ramires V, Wendt A, Mielke IG, Martinez-Mesa J, Wehrmeister FC. Simultaneidade de fatores de risco para doenças crônicas não transmissíveis entre idosos da zona urbana de Pelotas, Rio Grande do Sul, Brasil. Cad Saúde Pública 2017; 33(2): e00021916. http://dx.doi.org/10.1590/0102-311x00021916
http://dx.doi.org/10.1590/0102-311x00021...
. Among women, the most prevalent factor was insufficient physical activity during leisure time (73.4%) and for men it was insufficient intake of FVC (67.2%), in addition to alcohol abuse (32.5%) and smoking (11.9%) that had a higher prevalence. These results were similar to other studies with the elderly population, in which women had a higher prevalence of physical inactivity1414. Pereira JC, Barreto SM, Passos VMA. O Perfil de Saúde Cardiovascular dos Idosos Brasileiros Precisa Melhorar: Estudo de Base Populacional. Arq Bras Cardiol 2008; 91(1): 1-10. http://dx.doi.org/10.1590/S0066-782X2008001300001
http://dx.doi.org/10.1590/S0066-782X2008...
,1616. Ferreira CCC, Peixoto MRG, Barbosa MA, Silveira ÉA. Prevalência de fatores de risco cardiovascular em idosos usuários do Sistema Único de Saúde de Goiânia. Arq Bras Cardiol 2010; 95(5): 621-8. http://dx.doi.org/10.1590/S0066-782X2010005000141
http://dx.doi.org/10.1590/S0066-782X2010...
,2424. Cruz MF, Ramires V, Wendt A, Mielke IG, Martinez-Mesa J, Wehrmeister FC. Simultaneidade de fatores de risco para doenças crônicas não transmissíveis entre idosos da zona urbana de Pelotas, Rio Grande do Sul, Brasil. Cad Saúde Pública 2017; 33(2): e00021916. http://dx.doi.org/10.1590/0102-311x00021916
http://dx.doi.org/10.1590/0102-311x00021...
, which may explain the higher rates of abdominal obesity and being overweight 1414. Pereira JC, Barreto SM, Passos VMA. O Perfil de Saúde Cardiovascular dos Idosos Brasileiros Precisa Melhorar: Estudo de Base Populacional. Arq Bras Cardiol 2008; 91(1): 1-10. http://dx.doi.org/10.1590/S0066-782X2008001300001
http://dx.doi.org/10.1590/S0066-782X2008...
,1616. Ferreira CCC, Peixoto MRG, Barbosa MA, Silveira ÉA. Prevalência de fatores de risco cardiovascular em idosos usuários do Sistema Único de Saúde de Goiânia. Arq Bras Cardiol 2010; 95(5): 621-8. http://dx.doi.org/10.1590/S0066-782X2010005000141
http://dx.doi.org/10.1590/S0066-782X2010...
,2121. Oliveira JAS. Aglomerados de Fatores de Risco Cardiovascular e Síndrome da Fragilidade em Idosos [tese]. Salvador: Universidade Federal da Bahia; 2010.,2222. Moreira AD, Gomes CS, Felisbino-Mendes MS, Gomes FSL, Meléndez JGV, Velásquez G. Prevalência e aglomeração de fatores de risco cardiometabólicos em população idosa residente em área rural. Rev Min Enferm 2014; 18(4): 801-7.,2424. Cruz MF, Ramires V, Wendt A, Mielke IG, Martinez-Mesa J, Wehrmeister FC. Simultaneidade de fatores de risco para doenças crônicas não transmissíveis entre idosos da zona urbana de Pelotas, Rio Grande do Sul, Brasil. Cad Saúde Pública 2017; 33(2): e00021916. http://dx.doi.org/10.1590/0102-311x00021916
http://dx.doi.org/10.1590/0102-311x00021...
. Men had a higher prevalence of alcohol consumption1414. Pereira JC, Barreto SM, Passos VMA. O Perfil de Saúde Cardiovascular dos Idosos Brasileiros Precisa Melhorar: Estudo de Base Populacional. Arq Bras Cardiol 2008; 91(1): 1-10. http://dx.doi.org/10.1590/S0066-782X2008001300001
http://dx.doi.org/10.1590/S0066-782X2008...
,1515. Chou KL. The Prevalence and Clustering of Four Major Lifestyle Risk Factors in Hong Kong Chinese Older Adults. J Aging Health 2008; 20(7): 788-803. https://doi.org/10.1177/0898264308321082
https://doi.org/10.1177/0898264308321082...
,1616. Ferreira CCC, Peixoto MRG, Barbosa MA, Silveira ÉA. Prevalência de fatores de risco cardiovascular em idosos usuários do Sistema Único de Saúde de Goiânia. Arq Bras Cardiol 2010; 95(5): 621-8. http://dx.doi.org/10.1590/S0066-782X2010005000141
http://dx.doi.org/10.1590/S0066-782X2010...
,2121. Oliveira JAS. Aglomerados de Fatores de Risco Cardiovascular e Síndrome da Fragilidade em Idosos [tese]. Salvador: Universidade Federal da Bahia; 2010.,2424. Cruz MF, Ramires V, Wendt A, Mielke IG, Martinez-Mesa J, Wehrmeister FC. Simultaneidade de fatores de risco para doenças crônicas não transmissíveis entre idosos da zona urbana de Pelotas, Rio Grande do Sul, Brasil. Cad Saúde Pública 2017; 33(2): e00021916. http://dx.doi.org/10.1590/0102-311x00021916
http://dx.doi.org/10.1590/0102-311x00021...
and smoking1515. Chou KL. The Prevalence and Clustering of Four Major Lifestyle Risk Factors in Hong Kong Chinese Older Adults. J Aging Health 2008; 20(7): 788-803. https://doi.org/10.1177/0898264308321082
https://doi.org/10.1177/0898264308321082...
,2121. Oliveira JAS. Aglomerados de Fatores de Risco Cardiovascular e Síndrome da Fragilidade em Idosos [tese]. Salvador: Universidade Federal da Bahia; 2010.,2222. Moreira AD, Gomes CS, Felisbino-Mendes MS, Gomes FSL, Meléndez JGV, Velásquez G. Prevalência e aglomeração de fatores de risco cardiometabólicos em população idosa residente em área rural. Rev Min Enferm 2014; 18(4): 801-7..

Smoking among men relates to historical and cultural aspects, as this habit emerged as an essentially male behavior3939. Peixoto SV, Firmo JO, Lima-Costa MF. Factors associated to smoking habit among older adults (The Bambui Health and Aging Study). Rev Saúde Pública 2005; 39(5): 746-53. https://doi.org/10.1590/s0034-89102005000500008
https://doi.org/10.1590/s0034-8910200500...
. The decrease in this habit was confirmed by Freitas et al.1919. Freitas MPD, Loyola Filho AI, Lima-Costa MF. Birth cohort differences in cardiovascular risk factors in a Brazilian population of older elderly: the Bambuí cohort study of aging (1997 and 2008). Cad Saúde Pública 2011; 27(Supl. 3): S409-17. https://doi.org/10.1590/s0102-311x2011001500011
https://doi.org/10.1590/s0102-311x201100...
who, when following a cohort of the elderly, found that the prevalence of smoking decreased in the younger cohort compared to the oldest male cohort. This fact is in line with the decrease in smoking in Brazil due to strong anti-smoking public policies4040. Monteiro CA, Cavalcante TM, Moura EC, Claro RM, Szwarcwald CL. Population-based evidence of a strong decline in the prevalence of smokers in Brazil (1989-2003). Bull World Health Organ 2007; 85(7): 527-34. https://dx.doi.org/10.2471%2FBLT.06.039073
https://dx.doi.org/10.2471%2FBLT.06.0390...
. Alcoholism and smoking were also found by Senger et al.4141. Senger AEV, Ely LS, Gandolfi T, Schneider RH, Gomes I, De Carli GA. Alcoolismo e tabagismo em idosos: relação com ingestão alimentar e aspectos socioeconômicos. Rev Bras Geriatr Gerontol 2011; 14(4): 713-9. http://dx.doi.org/10.1590/S1809-98232011000400010
http://dx.doi.org/10.1590/S1809-98232011...
with a higher prevalence among men, 11.7 and 20.8%, respectively. Among the alcoholics and smokers, there were people with less education, no income and those who ate only two meals a day, which indicates worse concomitant life habits. In other studies, there was no significant difference between the sexes in relation to physical inactivity1515. Chou KL. The Prevalence and Clustering of Four Major Lifestyle Risk Factors in Hong Kong Chinese Older Adults. J Aging Health 2008; 20(7): 788-803. https://doi.org/10.1177/0898264308321082
https://doi.org/10.1177/0898264308321082...
, inadequacy in diet2222. Moreira AD, Gomes CS, Felisbino-Mendes MS, Gomes FSL, Meléndez JGV, Velásquez G. Prevalência e aglomeração de fatores de risco cardiometabólicos em população idosa residente em área rural. Rev Min Enferm 2014; 18(4): 801-7. and smoking1616. Ferreira CCC, Peixoto MRG, Barbosa MA, Silveira ÉA. Prevalência de fatores de risco cardiovascular em idosos usuários do Sistema Único de Saúde de Goiânia. Arq Bras Cardiol 2010; 95(5): 621-8. http://dx.doi.org/10.1590/S0066-782X2010005000141
http://dx.doi.org/10.1590/S0066-782X2010...
.

With regard to simultaneity, there are few studies with the elderly population especially those that have similar design to the present study. Therefore, it is difficult to be able to make comparisons and examine differing results. In the present study, 57.7% of participants had two or more risk factors concomitantly. Oliveira’s study2121. Oliveira JAS. Aglomerados de Fatores de Risco Cardiovascular e Síndrome da Fragilidade em Idosos [tese]. Salvador: Universidade Federal da Bahia; 2010. observed that the presence of two or more CVRF occurred in 81.7% of men and 88% of women, however, more than 10 risk factors were analyzed, which may explain the high rates found. Similarly, Ferreira et al.1616. Ferreira CCC, Peixoto MRG, Barbosa MA, Silveira ÉA. Prevalência de fatores de risco cardiovascular em idosos usuários do Sistema Único de Saúde de Goiânia. Arq Bras Cardiol 2010; 95(5): 621-8. http://dx.doi.org/10.1590/S0066-782X2010005000141
http://dx.doi.org/10.1590/S0066-782X2010...
, when investigating elderly users of the Goiânia Public Health System, identified simultaneity in 87.3% of the sample, which can be explained by the fact that they use a health system. In population-based investigations2020. Barreto SM, Passos VMA, Firmo JOA, Guerra HL, Vidigal PG, Lima-Costa MF. Hypertension and clustering of cardiovascular risk factors in a community in southeast Brazil-The Bambui Health and Ageing Study. Arq Bras Cardiol 2001; 77(6): 576-81. https://doi.org/10.1590/s0066-782x2001001200008
https://doi.org/10.1590/s0066-782x200100...
,2424. Cruz MF, Ramires V, Wendt A, Mielke IG, Martinez-Mesa J, Wehrmeister FC. Simultaneidade de fatores de risco para doenças crônicas não transmissíveis entre idosos da zona urbana de Pelotas, Rio Grande do Sul, Brasil. Cad Saúde Pública 2017; 33(2): e00021916. http://dx.doi.org/10.1590/0102-311x00021916
http://dx.doi.org/10.1590/0102-311x00021...
, simultaneity was closer to that in this study, 59.9 and 50.9%, respectively. Data from China1515. Chou KL. The Prevalence and Clustering of Four Major Lifestyle Risk Factors in Hong Kong Chinese Older Adults. J Aging Health 2008; 20(7): 788-803. https://doi.org/10.1177/0898264308321082
https://doi.org/10.1177/0898264308321082...
and the United Kingdom4242. Robinson SM, Jameson KA, Syddall HE, Dennison EM, Cooper C, Sayer AA, et al. Clustering of lifestyle risk factors and poor physical function in older adults: The Hertfordshire Cohort Study. J Am Geriatr Soc 2013; 61(10): 1684-91. https://doi.org/10.1111/jgs.12457
https://doi.org/10.1111/jgs.12457...
,4343. Syddall HE, Westbury LD, Simmonds SJ, Robinson S, Cooper C, Sayer AA. Understanding poor health behaviours as predictors of different types of hospital admission in older people: findings from the hertfordshire cohort study. J Epidemiol Community Health 2016; 70(3): 292-8. https://doi.org/10.1136/jech-2015-206425
https://doi.org/10.1136/jech-2015-206425...
show much lower simultaneity, ranging from 18.7 to 25.0%, which leads us to reflect on cultural influences on lifestyle.

With regard to the combinations, insufficient physical activity together with the insufficient consumption of FLV were observed to be the most prevalent for both sexes. This fact demonstrates that there is usually an accumulation of risk behaviors in the first causal level, and the elderly who practice less physical activity tend to have a poor diet and vice versa, which may lead to weight gain and the development of cardiovascular disorders. A similar analysis4444. Silva DAS, Peres KG, Boing AF, González-Chica DA, Peres MA. Clustering of risk behaviors for chronic noncommunicable diseases: A population-based study in southern Brazil. Prev Med 2013; 56(1): 20-4. https://doi.org/10.1016/j.ypmed.2012.10.022
https://doi.org/10.1016/j.ypmed.2012.10....
conducted with adults who also live in the city of Florianópolis identified a higher prevalence (30.6%) for this combination, suggesting that the tendency to accumulate these two harmful behaviors may continue over time.

The relation between lower levels of physical activity and a higher prevalence of obesity and vice versa is well known.4545. Mazo GZ, Mota J, Gonçalves LHT, Matos MG. Nível de atividade física, condições de saúde e características sócio demográficas de mulheres idosas brasileiras. Rev Portuguesa Ciên Desp 2005; 5(2): 202-12.,4646. Asp M, Simonsson B, Larm P, Molarius A. Physical mobility, physical activity, and obesity among elderly: findings from a large population-based Swedish survey. Public Health 2017; 147: 84-91. https://doi.org/10.1016/j.puhe.2017.01.032
https://doi.org/10.1016/j.puhe.2017.01.0...
. In the Cruz et al. study2424. Cruz MF, Ramires V, Wendt A, Mielke IG, Martinez-Mesa J, Wehrmeister FC. Simultaneidade de fatores de risco para doenças crônicas não transmissíveis entre idosos da zona urbana de Pelotas, Rio Grande do Sul, Brasil. Cad Saúde Pública 2017; 33(2): e00021916. http://dx.doi.org/10.1590/0102-311x00021916
http://dx.doi.org/10.1590/0102-311x00021...
, it was observed that physical inactivity plus excess weight was the most frequent grouping between the men (18.1%) and the women (30.7%). Still, they demonstrated that being inactive increases one’s chance of being overweight, because physical inactivity leads to low energy expenditure.

The present investigation identified that being male increases one’s probability of accumulating cardiovascular factors of risk by 11,0% and that each additional year of schooling diminishes the probability by 4.0%. A Chinese study1515. Chou KL. The Prevalence and Clustering of Four Major Lifestyle Risk Factors in Hong Kong Chinese Older Adults. J Aging Health 2008; 20(7): 788-803. https://doi.org/10.1177/0898264308321082
https://doi.org/10.1177/0898264308321082...
noted that among those with 3 or 4 risk factors, 93.0% were men. Some studies1616. Ferreira CCC, Peixoto MRG, Barbosa MA, Silveira ÉA. Prevalência de fatores de risco cardiovascular em idosos usuários do Sistema Único de Saúde de Goiânia. Arq Bras Cardiol 2010; 95(5): 621-8. http://dx.doi.org/10.1590/S0066-782X2010005000141
http://dx.doi.org/10.1590/S0066-782X2010...
,2121. Oliveira JAS. Aglomerados de Fatores de Risco Cardiovascular e Síndrome da Fragilidade em Idosos [tese]. Salvador: Universidade Federal da Bahia; 2010. with elderly Brazilians identified an association of simultaneity with females, and other studies1414. Pereira JC, Barreto SM, Passos VMA. O Perfil de Saúde Cardiovascular dos Idosos Brasileiros Precisa Melhorar: Estudo de Base Populacional. Arq Bras Cardiol 2008; 91(1): 1-10. http://dx.doi.org/10.1590/S0066-782X2008001300001
http://dx.doi.org/10.1590/S0066-782X2008...
,2222. Moreira AD, Gomes CS, Felisbino-Mendes MS, Gomes FSL, Meléndez JGV, Velásquez G. Prevalência e aglomeração de fatores de risco cardiometabólicos em população idosa residente em área rural. Rev Min Enferm 2014; 18(4): 801-7.,2424. Cruz MF, Ramires V, Wendt A, Mielke IG, Martinez-Mesa J, Wehrmeister FC. Simultaneidade de fatores de risco para doenças crônicas não transmissíveis entre idosos da zona urbana de Pelotas, Rio Grande do Sul, Brasil. Cad Saúde Pública 2017; 33(2): e00021916. http://dx.doi.org/10.1590/0102-311x00021916
http://dx.doi.org/10.1590/0102-311x00021...
found no association according to sex. It is believed that these divergences can be found due to the great methodological diversity in relation to data collection, types and ways of classifying risk factors, as well as the socioeconomic and cultural influences among populations4747. Fornari C, Donfrancesco C, Riva MA, Palmieri L, Panico S, Vanuzzo D, et al. Social status and cardiovascular disease: a Mediterranean case. results from the Italian Progetto CUORE cohort study. BMC Public Health 2010; 10: 574. https://doi.org/10.1186/1471-2458-10-574
https://doi.org/10.1186/1471-2458-10-574...
.

Similar studies4444. Silva DAS, Peres KG, Boing AF, González-Chica DA, Peres MA. Clustering of risk behaviors for chronic noncommunicable diseases: A population-based study in southern Brazil. Prev Med 2013; 56(1): 20-4. https://doi.org/10.1016/j.ypmed.2012.10.022
https://doi.org/10.1016/j.ypmed.2012.10....
,4848. Costa FF, Benedet J, Leal DB, Assis MAA. Clustering of risk factors for non communcable diseases in adults from Florianopolis, SC. Rev Bras Epidemiol 2013; 16(2): 398-408. https://doi.org/10.1590/S1415-790X2013000200015
https://doi.org/10.1590/S1415-790X201300...
with the adult population of Florianópolis found that men were two and ten times more likely to simultaneously have three or four risk behaviors for NCDs than women, respectively. The same studies corroborate the present research in relation to education, which showed that less educated participants aggregated and accumulated more risk behaviors. It is worth noting the large difference found in the distribution of education level between the group without risk factors and the group with a risk factor. Among those without risk factors, 43.0% had high levels of education and among the group with 1 risk factor, 41.0% had low levels of education.

Schooling is an important tool in the search for a healthy lifestyle, both on an individual level, as it facilitates the understanding of educational messages related to health promotion, as well as in its connection with gaining a better socioeconomic status, by reinforcing the idea of the social determination of risk behaviors4949. Lima-Costa MF. A escolaridade afeta, igualmente, comportamentos prejudiciais à saúde de idosos e adultos mais jovens? Inquérito de Saúde da Região Metropolitana de Belo Horizonte, Minas Gerais, Brasil. Epidemiol Serv Saúde 2004; 13(4): 201-8. http://dx.doi.org/10.5123/S1679-49742004000400002
http://dx.doi.org/10.5123/S1679-49742004...
,5050. Santa-Helena ETD, Nemes MIB, Eluf Neto J. Fatores associados à não-adesão ao tratamento com anti-hipertensivos em pessoas atendidas em unidades de saúde da família. Cad Saúde Pública 2010; 26(12): 2389-98. http://dx.doi.org/10.1590/S0102-311X2010001200017
http://dx.doi.org/10.1590/S0102-311X2010...
,5151. Loch MR, Bortoletto MSS, Tanno de Souza RK, Mesas AE. Simultaneidade de comportamentos de risco para a saúde e fatores associados em estudo de base populacional. Cad Saúde Coletiva 2015; 23(2): 180-7. http://dx.doi.org/10.1590/1414-462X201500020045
http://dx.doi.org/10.1590/1414-462X20150...
.

This study had some limitations: the cross-sectional design did not allow for causal inferences to be made; survival bias could have led to an underestimation of outcome prevalence; the existence of few studies on the subject that had the same population, and the methodological differences found, especially regarding the categorization of the outcome. In addition, a possible information bias cannot be ruled out, especially in the oldest elderly, and the sample loss in the construction of the outcome variable due to the lack of complete data in the database.

However, the following can be highlighted as strengths: the population-based sample from a well-structured cohort with a high response rate (89.2%), which allowed for the results to be extrapolated to the elderly population of Florianópolis. The measurement of the variables came from well-known and validated instruments. A multivariate analysis and an exploration of the types of combinations enriched the results, and interpretations of them.

CONCLUSION

The simultaneity of behaviors has similarities and differences in relation to phases of life, reflecting the heterogeneity of the aging process and providing evidence of factors that must be tackled together. However, these factors need to be addressed in different ways for people of different sexes and education levels.

Thus, we suggest that both individual clinical approaches and campaigns aimed at healthy aging public policies consider the simultaneity of risk factors and not only each factor in isolation. Specific assessment tools could be introduced in individual clinical approaches and a specific approach to aggregating CVR behaviors could be part of educational campaigns. This could lead to the dissemination of successful lifestyle change strategies and not just the repetition of instructions for a healthy life. Nevertheless, follow-up studies are recommended in order to identify changes in the intervention profile with these new strategies.

ACKNOWLEDGMENTS

We would like to thank the technicians of the Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística - IBGE) and the Municipal Health Secretariat of Florianópolis for their assistance in the implementation of this study. We would like to thank Dr. Antonio Fernando Boing, for the suggestions during the writing of this paper.

E. d’Orsi received a productivity grant from the National Council for Scientific and Technological Development (CNPq), process number 304606/2016-2.

References

  • 1
    Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Plano de ações estratégicas para enfrentamento das doenças crônicas não transmissíveis (DCNT) no Brasil 2011-2022. Brasília: Ministério da Saúde; 2011.
  • 2
    Ribeiro AG, Cotta RMM, Ribeiro SMR. A promoção da saúde e a prevenção integrada dos fatores de risco para doenças cardiovasculares. Ciênc Saúde Coletiva 2012; 17(1): 7-17. http://dx.doi.org/10.1590/S1413-81232012000100002
    » http://dx.doi.org/10.1590/S1413-81232012000100002
  • 3
    Abubakar II, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385(9963): 117-71. https://doi.org/10.1016/S0140-6736(14)61682-2
    » https://doi.org/10.1016/S0140-6736(14)61682-2
  • 4
    Oliveira EL, Westphal GA, Mastroeni MF. Características clínico-demográficas de pacientes submetidos a cirurgia de revascularização do miocárdio e sua relação com a mortalidade. Rev Bras Cir Cardiovasc 2012; 27(1): 52-60. http://dx.doi.org/10.5935/1678-9741.20120009
    » http://dx.doi.org/10.5935/1678-9741.20120009
  • 5
    Yazdanyar A, Newman AB. The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clin Geriatr Med 2009; 25(4): 563-77. https://doi.org/10.1016/j.cger.2009.07.007
    » https://doi.org/10.1016/j.cger.2009.07.007
  • 6
    Simão AF, Précoma DB, Andrade JP, Correa Filho H, Saraiva JF, Oliveira GM. I cardiovascular prevention guideline of the Brazilian Society of Cardiology - executive summary. Arq Bras Cardiol 2014; 102(5): 420-31. https://dx.doi.org/10.5935%2Fabc.20140067
    » https://dx.doi.org/10.5935%2Fabc.20140067
  • 7
    World Health Organization. 65th World Health Assembly closes with new global health measures [Internet]. World Health Organization; 2012 [acesso em 1º nov. 2017]. Disponível em: Disponível em: https://www.who.int/mediacentre/news/releases/2012/wha65_closes_20120526/en/
    » https://www.who.int/mediacentre/news/releases/2012/wha65_closes_20120526/en/
  • 8
    Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364(9438): 937-52. https://doi.org/10.1016/S0140-6736(04)17018-9
    » https://doi.org/10.1016/S0140-6736(04)17018-9
  • 9
    O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 2010; 376(9735): 112-23. https://doi.org/10.1016/S0140-6736(10)60834-3
    » https://doi.org/10.1016/S0140-6736(10)60834-3
  • 10
    Boden-Albala B, Sacco RL, Lee HS, Grahame-Clarke C, Rundek T, Elkind MV, et al. Metabolic syndrome and ischemic stroke risk: Northern Manhattan Study. Stroke 2008; 39(1): 30-5. https://doi.org/10.1161/STROKEAHA.107.496588
    » https://doi.org/10.1161/STROKEAHA.107.496588
  • 11
    Sociedade Brasileira de Cardiologia. II Diretrizes brasileiras em cardiogeriatria. Arq Bras Cardiol 2010; 95(3 Supl. 2): 1-112. http://dx.doi.org/10.1590/S0066-782X2010002100001
    » http://dx.doi.org/10.1590/S0066-782X2010002100001
  • 12
    Xavier HT, Izar MC, Faria Neto JR, Assad MH, Rocha VZ, Sposito AC, et al. V Diretriz brasileira de dislipidemia e prevenção da aterosclerose. Arq Bras Cardiol 2013; 101(4 Supl. 1): 1-36.
  • 13
    Ebrahim S, Montaner D, Lawlor DA. Clustering of risk factors and social class in childhood and adulthood in British women’s heart and health study: cross sectional analysis. BMJ 2004; 328(7444): 861. https://doi.org/10.1136/bmj.38034.702836.55
    » https://doi.org/10.1136/bmj.38034.702836.55
  • 14
    Pereira JC, Barreto SM, Passos VMA. O Perfil de Saúde Cardiovascular dos Idosos Brasileiros Precisa Melhorar: Estudo de Base Populacional. Arq Bras Cardiol 2008; 91(1): 1-10. http://dx.doi.org/10.1590/S0066-782X2008001300001
    » http://dx.doi.org/10.1590/S0066-782X2008001300001
  • 15
    Chou KL. The Prevalence and Clustering of Four Major Lifestyle Risk Factors in Hong Kong Chinese Older Adults. J Aging Health 2008; 20(7): 788-803. https://doi.org/10.1177/0898264308321082
    » https://doi.org/10.1177/0898264308321082
  • 16
    Ferreira CCC, Peixoto MRG, Barbosa MA, Silveira ÉA. Prevalência de fatores de risco cardiovascular em idosos usuários do Sistema Único de Saúde de Goiânia. Arq Bras Cardiol 2010; 95(5): 621-8. http://dx.doi.org/10.1590/S0066-782X2010005000141
    » http://dx.doi.org/10.1590/S0066-782X2010005000141
  • 17
    Yang Q, Cogswell ME, Flanders WD, Hong Y, Zhang Z, Loustalot F, et al. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. JAMA 2012; 307(12): 1273-83. https://doi.org/10.1001/jama.2012.339
    » https://doi.org/10.1001/jama.2012.339
  • 18
    D’amico MM, Souza RKT. Simultaneidade de Fatores de Risco Cardiovascular Controláveis: Estudo de Base Populacional. Rev Bras Cardiol 2014; 27(5): 318-26.
  • 19
    Freitas MPD, Loyola Filho AI, Lima-Costa MF. Birth cohort differences in cardiovascular risk factors in a Brazilian population of older elderly: the Bambuí cohort study of aging (1997 and 2008). Cad Saúde Pública 2011; 27(Supl. 3): S409-17. https://doi.org/10.1590/s0102-311x2011001500011
    » https://doi.org/10.1590/s0102-311x2011001500011
  • 20
    Barreto SM, Passos VMA, Firmo JOA, Guerra HL, Vidigal PG, Lima-Costa MF. Hypertension and clustering of cardiovascular risk factors in a community in southeast Brazil-The Bambui Health and Ageing Study. Arq Bras Cardiol 2001; 77(6): 576-81. https://doi.org/10.1590/s0066-782x2001001200008
    » https://doi.org/10.1590/s0066-782x2001001200008
  • 21
    Oliveira JAS. Aglomerados de Fatores de Risco Cardiovascular e Síndrome da Fragilidade em Idosos [tese]. Salvador: Universidade Federal da Bahia; 2010.
  • 22
    Moreira AD, Gomes CS, Felisbino-Mendes MS, Gomes FSL, Meléndez JGV, Velásquez G. Prevalência e aglomeração de fatores de risco cardiometabólicos em população idosa residente em área rural. Rev Min Enferm 2014; 18(4): 801-7.
  • 23
    Covatti CF, Santos JM, Vicente AAS, Greff NT, Vicentini AP. Fatores de risco para doenças cardiovasculares em adultos e idosos de um hospital universitário. Nutr Clín Diet Hosp 2016; 36(1): 24-30. https://doi.org/10.12873/361covatti
    » https://doi.org/10.12873/361covatti
  • 24
    Cruz MF, Ramires V, Wendt A, Mielke IG, Martinez-Mesa J, Wehrmeister FC. Simultaneidade de fatores de risco para doenças crônicas não transmissíveis entre idosos da zona urbana de Pelotas, Rio Grande do Sul, Brasil. Cad Saúde Pública 2017; 33(2): e00021916. http://dx.doi.org/10.1590/0102-311x00021916
    » http://dx.doi.org/10.1590/0102-311x00021916
  • 25
    Instituto Brasileiro de Geografia e Estatística. Estimativas populacionais residentes, em 1º de julho de 2009, segundo os municípios [Internet]. Brasília; 2009 [acessadoem 8 ago. 2017]. Disponível em: Disponível em: http://www.ibge.gov.br/home/estatistica/populacao/estimativa2009/POP2009_DOU.pdf
    » http://www.ibge.gov.br/home/estatistica/populacao/estimativa2009/POP2009_DOU.pdf
  • 26
    Programa das Nações Unidas para o Desenvolvimento. O Índice de Desenvolvimento Humano Municipal Brasileiro: Série Atlas do Desenvolvimento Humano no Brasil. Programa das Nações Unidas para o Desenvolvimento; 2013. 93 p.
  • 27
    Confortin SC, Schneider IJC, Antes DL, Cembranel F, Ono LM, Marques LP, et al. Condições de vida e saúde de idosos: resultados do estudo de coorte EpiFloripa Idoso. Epidemiol Serv Saúde 2017; 26(2): 305-17. http://dx.doi.org/10.5123/s1679-49742017000200008
    » http://dx.doi.org/10.5123/s1679-49742017000200008
  • 28
    Schneider IJC, Confortin SC, Bernardo CO, Bolsoni CC, Antes DL, Pereira KG, et al. Estudo de coorte EpiFloripa Idoso: métodos, aspectos operacionais e estratégias de seguimento. Rev Saúde Pública 2017; 51: 104. http://dx.doi.org/10.11606/s1518-8787.2017051006776
    » http://dx.doi.org/10.11606/s1518-8787.2017051006776
  • 29
    Moura EC, Morais Neto OL, Malta DC, Moura L, Silva NN, Bernal R, et al. Vigilância de fatores de risco para doenças crônicas por inquérito telefônico nas capitais dos 26 estados brasileiros e no Distrito Federal (2006). Rev Bras Epidemiol 2008: 11(Supl. 1): 20-37. http://dx.doi.org/10.1590/S1415-790X2008000500003
    » http://dx.doi.org/10.1590/S1415-790X2008000500003
  • 30
    Brasil. Vigitel 2014: Vigilância de fatores de Risco para doenças crônicas por inquérito telefônico. Brasil; 2015. 135 p.
  • 31
    Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003; 35(8): 1381-95. https://doi.org/10.1249/01.MSS.0000078924.61453.FB
    » https://doi.org/10.1249/01.MSS.0000078924.61453.FB
  • 32
    Babor TF, Higgins-Biddle JC, Saunders JB, Monteiro MG. The alcohol use disorders identification test: guidelines for use in primary care. 2ª ed. Genebra: World Health Organization; 2001.
  • 33
    Schuit AJ, Van Loon AJ, Tijhuis M, Ocké M. Clustering of lifestyle risk factors in a general adult population. Prev Med 2002; 35(3): 219-24. https://doi.org/10.1006/pmed.2002.1064
    » https://doi.org/10.1006/pmed.2002.1064
  • 34
    Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3ª ed. Filadélfia: Lippincott Williams & Wilkins; 2008.
  • 35
    Beaglehole R, Bonita R, Horton R, Adams C, Alleyne G, Asaria P, et al. Priority actions for the non-communicable disease crisis. Lancet 2011; 377(9775): 1438-47. https://doi.org/10.1016/S0140-6736(11)60393-0
    » https://doi.org/10.1016/S0140-6736(11)60393-0
  • 36
    Fernandes LCL, Bertoldi AD, Barros AJD. Utilização dos serviços de saúde pela população coberta pela Estratégia de Saúde da Família. Rev Saúde Públic 2009; 43(4): 595-603. http://dx.doi.org/10.1590/S0034-89102009005000040
    » http://dx.doi.org/10.1590/S0034-89102009005000040
  • 37
    Bastos GAN, Del Duca GF, Hallal PC, Santos IS. Utilização de serviços médicos no sistema público de saúde no Sul do Brasil. Rev Saúde Pública 2011; 45(3): 475-84. http://dx.doi.org/10.1590/S0034-89102011005000024
    » http://dx.doi.org/10.1590/S0034-89102011005000024
  • 38
    Levorato CD, Mello LM, Silva AS, Nunes AA. Fatores associados à procura por serviços de saúde numa perspectiva relacional de gênero. Ciênc Saúde Coletiva 2014; 19(4): 1263-74. http://dx.doi.org/10.1590/1413-81232014194.01242013
    » http://dx.doi.org/10.1590/1413-81232014194.01242013
  • 39
    Peixoto SV, Firmo JO, Lima-Costa MF. Factors associated to smoking habit among older adults (The Bambui Health and Aging Study). Rev Saúde Pública 2005; 39(5): 746-53. https://doi.org/10.1590/s0034-89102005000500008
    » https://doi.org/10.1590/s0034-89102005000500008
  • 40
    Monteiro CA, Cavalcante TM, Moura EC, Claro RM, Szwarcwald CL. Population-based evidence of a strong decline in the prevalence of smokers in Brazil (1989-2003). Bull World Health Organ 2007; 85(7): 527-34. https://dx.doi.org/10.2471%2FBLT.06.039073
    » https://dx.doi.org/10.2471%2FBLT.06.039073
  • 41
    Senger AEV, Ely LS, Gandolfi T, Schneider RH, Gomes I, De Carli GA. Alcoolismo e tabagismo em idosos: relação com ingestão alimentar e aspectos socioeconômicos. Rev Bras Geriatr Gerontol 2011; 14(4): 713-9. http://dx.doi.org/10.1590/S1809-98232011000400010
    » http://dx.doi.org/10.1590/S1809-98232011000400010
  • 42
    Robinson SM, Jameson KA, Syddall HE, Dennison EM, Cooper C, Sayer AA, et al. Clustering of lifestyle risk factors and poor physical function in older adults: The Hertfordshire Cohort Study. J Am Geriatr Soc 2013; 61(10): 1684-91. https://doi.org/10.1111/jgs.12457
    » https://doi.org/10.1111/jgs.12457
  • 43
    Syddall HE, Westbury LD, Simmonds SJ, Robinson S, Cooper C, Sayer AA. Understanding poor health behaviours as predictors of different types of hospital admission in older people: findings from the hertfordshire cohort study. J Epidemiol Community Health 2016; 70(3): 292-8. https://doi.org/10.1136/jech-2015-206425
    » https://doi.org/10.1136/jech-2015-206425
  • 44
    Silva DAS, Peres KG, Boing AF, González-Chica DA, Peres MA. Clustering of risk behaviors for chronic noncommunicable diseases: A population-based study in southern Brazil. Prev Med 2013; 56(1): 20-4. https://doi.org/10.1016/j.ypmed.2012.10.022
    » https://doi.org/10.1016/j.ypmed.2012.10.022
  • 45
    Mazo GZ, Mota J, Gonçalves LHT, Matos MG. Nível de atividade física, condições de saúde e características sócio demográficas de mulheres idosas brasileiras. Rev Portuguesa Ciên Desp 2005; 5(2): 202-12.
  • 46
    Asp M, Simonsson B, Larm P, Molarius A. Physical mobility, physical activity, and obesity among elderly: findings from a large population-based Swedish survey. Public Health 2017; 147: 84-91. https://doi.org/10.1016/j.puhe.2017.01.032
    » https://doi.org/10.1016/j.puhe.2017.01.032
  • 47
    Fornari C, Donfrancesco C, Riva MA, Palmieri L, Panico S, Vanuzzo D, et al. Social status and cardiovascular disease: a Mediterranean case. results from the Italian Progetto CUORE cohort study. BMC Public Health 2010; 10: 574. https://doi.org/10.1186/1471-2458-10-574
    » https://doi.org/10.1186/1471-2458-10-574
  • 48
    Costa FF, Benedet J, Leal DB, Assis MAA. Clustering of risk factors for non communcable diseases in adults from Florianopolis, SC. Rev Bras Epidemiol 2013; 16(2): 398-408. https://doi.org/10.1590/S1415-790X2013000200015
    » https://doi.org/10.1590/S1415-790X2013000200015
  • 49
    Lima-Costa MF. A escolaridade afeta, igualmente, comportamentos prejudiciais à saúde de idosos e adultos mais jovens? Inquérito de Saúde da Região Metropolitana de Belo Horizonte, Minas Gerais, Brasil. Epidemiol Serv Saúde 2004; 13(4): 201-8. http://dx.doi.org/10.5123/S1679-49742004000400002
    » http://dx.doi.org/10.5123/S1679-49742004000400002
  • 50
    Santa-Helena ETD, Nemes MIB, Eluf Neto J. Fatores associados à não-adesão ao tratamento com anti-hipertensivos em pessoas atendidas em unidades de saúde da família. Cad Saúde Pública 2010; 26(12): 2389-98. http://dx.doi.org/10.1590/S0102-311X2010001200017
    » http://dx.doi.org/10.1590/S0102-311X2010001200017
  • 51
    Loch MR, Bortoletto MSS, Tanno de Souza RK, Mesas AE. Simultaneidade de comportamentos de risco para a saúde e fatores associados em estudo de base populacional. Cad Saúde Coletiva 2015; 23(2): 180-7. http://dx.doi.org/10.1590/1414-462X201500020045
    » http://dx.doi.org/10.1590/1414-462X201500020045

  • Source of funding: National Council for Scientific and Technological Development (CNPq), process No. 569834/2008-2 and No. 304606/2016-2 and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Publication Dates

  • Publication in this collection
    05 Dec 2019
  • Date of issue
    2019

History

  • Received
    09 Apr 2018
  • Reviewed
    25 July 2018
  • Accepted
    24 Aug 2018
Associação Brasileira de Pós -Graduação em Saúde Coletiva São Paulo - SP - Brazil
E-mail: revbrepi@usp.br