Predicciones de un modelo SEIR para casos de COVID-19 en Cali, Colombia

Predictions of a SEIR model for COVID-19 cases in Cali-Colombia

Delia Ortega-Lenis David Arango-Londoño Edgar Muñoz Daniel E. Cuartas Diana Caicedo Jorge Mena Miyerlandi Torres Fabian Mendez Acerca de los autores

RESUMEN

Objetivo

Predecir el número de casos de COVID-19 en la ciudad de Cali-Colombia mediante el desarrollo de un modelo SEIR.

Métodos

Se utilizó un modelo determinista compartimental SEIR considerando los estados: susceptibles (S), expuestos (E), infectados (I) y recuperados (R). Los parámetros del modelo fueron seleccionados de acuerdo a la revisión de literatura. En el caso de la tasa de letalidad, se usaron los datos de la Secretaría de Salud Municipal de Cali. Se plantearon varios escenarios teniendo en cuenta variaciones en el número básico de reproducción (R0) y en la tasa de letalidad; además, se comparó la predicción hasta el 9 de abril con los datos observados.

Resultados

A través del modelo SEIR se encontró que, con el número básico de reproducción más alto (2,6) y utilizando la letalidad calculada para la ciudad de 2,0%, el número máximo de casos se alcanzaría el primero de junio con 195 666 (prevalencia); sin embargo, al comparar los casos observados con los esperados, al inicio la ocurrencia observada estaba por encima de la proyectada; pero luego cambia la tendencia con una disminución marcada de la pendiente.

Conclusiones

Los modelos epidemiológicos SEIR son métodos muy utilizados para la proyección de casos en enfermedades infecciosas; sin embargo, se debe tener en cuenta que son modelos deterministas que pueden utilizar parámetros supuestos y podrían generar resultados imprecisos.

Palabras Clave:
Infecciones por coronavirus; pandemias; predicción; número básico de reproducción (fuente: DeCS, BIREME)

ABSTRACT

Objective

To predict the number of cases of COVID-19 in the city of Cali-Colombia through the development of a SEIR model.

Methods

A SEIR compartmental deterministic model was used considering the states: susceptible (S), exposed (E), infected (I) and recovered (R). The model parameters were selected according to the literature review, in the case of the case fatality rate data from the Municipal Secretary of Health were used. Several scenarios were considered taking into account variations in the basic number of reproduction (R0), and the prediction until april 9 was compared with the observed data.

Results

Through the SEIR model it was found that with the highest basic number of reproduction [2,6] and using the case fatality rate for the city of 2,0%, the maximum number of cases would be reached on June 1 with 195 666 (prevalence). However, when comparing the observed with the expected cases, at the beginning the observed occurrence was above the projected, but then the trend changes decreasing the slope.

Conclusions

SEIR epidemiological models are widely used methods for projecting cases in infectious diseases, however it must be taken into account that they are deterministic models that can use assumed parameters and could generate imprecise results.

Key Words:
Coronavirus infections; pandemics; forecasting; basic reproduction number (source: MeSH, NLM)

La enfermedad por el nuevo coronavirus (co-VID-19) se ha convertido en una gran amenaza a la salud de las personas en todo el mundo. Hasta el 9 de abril de 2020 se habían reportado 1 601 018 casos, 95 699 muertes (5,5%) y 354 464 recuperados (21,7%) en 184 países afectados. Los países hasta esa fecha con mayor número de infectados eran Estados Unidos (465 750), España (153 222), Italia (143 626), Francia (118 783), Alemania (118 235) y China (82 919). El mayor número de muertes se había presentado en Italia (18 279), Estados Unidos (16 684) y España (15 447) 11. COVID-19 Dashboard by the Center for Systems Science and En-gineering (CSSE) at Johns Hopkins University [Internet]. Baltimore: Johns Hopkins University; 2020 [updated 2020; cited 2020 Abril 14]. Available from: Available from: https://bit.ly/3ceI1Qe .
https://bit.ly/3ceI1Qe...
.

Para Colombia, las cifras reportadas hasta ese día iban en 2 223 casos, 69 muertes (2,9%) y 174 recuperados (5,6%). En Cali, la tercera ciudad con mayor población en el país, se habían reportado 243 casos, 5 muertes y 11 recuperados 22. Módulo de datos COVID-19 en Colombia. Bogotá: Instituto Nacional de Salud; 2020 [updated 2020, cited 2020 Abril 14]. Available from: Available from: https://bit.ly/2YGzu4D .
https://bit.ly/2YGzu4D...
.

Ante el progreso de esta pandemia, los países alrededor del mundo han implementado diferentes medidas sin precedentes, como el cierre de fronteras, escuelas, universidades, iglesias, todo tipo de eventos sociales y aislamiento de la población en sus casas. Todas estas estrategias han sido influidas por la limitación en el número de pruebas realizadas, la falta de recursos médicos y la baja capacidad para la atención ante un brote de esta magnitud, además de la dificultad para tener otras herramientas de prevención inmediatas 33. Radulescu A, Cavanagh K. Management strategies in a SEIR model of COVID-19 community spread [preprint]. Physics.soc-ph. Arxiv. 2020 [cited 2020 Abril 14]. Available from: Available from: https://bit.ly/3dujJCd .
https://bit.ly/3dujJCd...
.

Desde el inicio de la epidemia, se han estimado varios modelos de predicción utilizando diferentes metodologías, como los modelos determinísticos, estocásticos o una combinación de ambos 44. Ferguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Bague-lin M. et al. Impact of non-pharmaceutical interventions (NPIs) to re duce COVID-19 mortality and healthcare demand. Imperial College. 2020 [Cited 2020 Abril 23]. Available from: Available from: https://bit.ly/35GGuA6 . DOI:10.25561/77482.
https://bit.ly/35GGuA6...

5. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, Da-vies N, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020 [Cited 2020 Abril 15]. Available from: Available from: https://bit.ly/2WBMpSP . DOI:10.1016/S1473-3099(20)30144-4.
https://bit.ly/2WBMpSP...
-66. Crokidakis N. Data analysis and modeling of the evolution of COVID-19 in Brazil [Preprint]. Physics.soc-ph. arXiv. 2020 [Cited 2020 Abril 23]. Available from: Available from: https://bit.ly/2A9xuI7 .
https://bit.ly/2A9xuI7...
. Todos tienen un mismo objetivo: la predicción del número de personas infectadas en las próximas semanas, la fecha probable del pico y la estimación del número de casos críticos que requieren manejo en UCI. Esta información permite no solo preparar medidas de contingencia en los servicios de salud y de construcción de planes para atender otros sectores afectados, sino además evaluar las intervenciones realizadas por las autoridades.

Para Colombia, el Instituto Nacional de Salud (INS) realizó proyecciones utilizando un modelo determinista SIR; además, Manrique et ál. también muestran los resultados del mismo modelo para el país 77. Manrique FG, Agudelo CA, González VM, Gutiérrez O, Téllez CF, He rrera G. Modelo SIR de la pandemia de Covid-19 en Colombia. Rev. Salud Pública. 2020 Feb [Cited 2020 Abril 15]; 2(1):1-9. Available from: Available from: https://bit.ly/2WzJjin . DOI:10.15446/rsap.v22.85977.
https://bit.ly/2WzJjin...
. Sin embargo, en la literatura aún no se reportan modelos epidemiológicos para la ciudad de Cali que ayuden en la toma de decisiones; por ello, el objetivo de este estudio es mostrar las predicciones realizadas a través de un modelo epidemiológico determinista en la ciudad.

MÉTODOS

Se ajustó un modelo compartimental determinista SEIR basado en el estado epidemiológico de los individuos. La ventana de tiempo fue de 400 días a partir del 15 de marzo, fecha en la que se reportó el primer caso en la ciudad. Las proyecciones del modelo se realizaron en el software R; para los gráficos se usó la librería ggplot 88. Create a new ggplot. Tdyverse [Internet]. USA: RStudio; 2020 [Cited 2020 Abril 15]. Available from: Available from: https://bit.ly/2WAJutF .
https://bit.ly/2WAJutF...
.

Datos

Se utilizaron datos del reporte de casos diario de la Secretaría de Salud Municipal de Cali para el cálculo de la tasa de letalidad, teniendo en cuenta la fecha de inicio de síntomas la cuál se ajusta más a la dinámica de transmisión. La población de la ciudad en el año 2020 se obtuvo a través de la proyección poblacional del Departamento Administrativo Nacional de Estadística (DANE).

Modelo SEIR

Los procesos de transmisión de agentes infecciosos en poblaciones hospederas representan uno de los principales objetivos de estudio de los modelos epidemiológicos compartimentales, los cuales se basan en sistemas de ecuaciones diferenciales para el movimiento de la población a través de estados discretos. De esta forma, cuando un patógeno aparece en una comunidad hospedera, estos modelos dividen los individuos en categorías que dependen del tipo de infección 99. Mandal S, Ram Rup S, Somdatta S. Mathematical models of malaria-a review. Malar J. July 2020 [Cited 2020 Abril 15]; 10(202): 1-19. Availa ble from: Availa ble from: https://bit.ly/2LcF9r6 . DOI:10.1186/1475-2875-10-202.
https://bit.ly/2LcF9r6...
. Estas categorías o también llamados compartimientos son representadas teniendo en cuenta una notación estándar desarrollada por Kermack y Mckendrik 1010. Kermack WO, McKendrick AG. Contribution to the mathematical theory to epidemics-I. Proc R Soc Lond. 1991 [Cited 2020 Abril 15]; 115:100 -121. Available from: Available from: https://bit.ly/2WtZ4ag . DOI:10.1007/BF02464423.
https://bit.ly/2WtZ4ag...
. En el caso del modelo SEIR, su sigla significa que tienen en cuenta: fracción de la población hospedera que es susceptible a la infección (S), fracción de infectados pero que aún no transmiten la infección a otros durante el periodo de latencia (E), fracción de infectados que pueden transmitir la infección (Γ) y la fracción de recuperados que adquieren inmunidad temporal o permanente (R).

El sistema de ecuaciones diferenciales ordinarias del modelo SEIR para una población fija es el siguiente:

donde μ es la tasa de mortalidad en la población (no relacionada con la enfermedad), β es la tasa efectiva de contacto (parámetro que controla qué tan frecuente un contacto susceptible-infectado resulta en una nueva exposición), ν es la tasa de vacunación si una vacuna existiera (en este caso se asume cero), o es la tasa a la cual una persona expuesta se convierte en infecciosa, y γ es la tasa a la cual un infectado se recupera y pasa a ser resistente.

Este modelo asume que la población es constante, que la tasa de letalidad es baja comparada con otras enfermedades, y que, además, todos los hospederos infectados adquieren inmunidad.

Así mismo, el número reproductivo R 0 que representa el número esperado de individuos secundarios resultantes de una infección inicial se obtiene a través de la siguiente fórmula:

El cálculo de este parámetro se realiza sin tener en cuenta la existencia de una vacuna, además asumiendo que es constante en toda la población. Si este es mayor a 1, cada persona infectada produce más de un nuevo caso y la enfermedad es capaz de propagarse e infectar la población susceptible. En la práctica, este parámetro puede ser difícil de medir, debido a que depende de datos de seguimiento muy específicos en la población, como la frecuencia en que una persona infectada-susceptible resulta en una nueva exposición y la tasa en la cual una persona se vuelve infectiva. Para el modelo de este estudio, se utilizaron diferentes escenarios del valor de R 0 , de acuerdo a lo reportado en la literatura, teniendo en cuenta que las posibles medidas de intervención realizadas o a realizar afectarán principalmente este parámetro. Las proyecciones del número de infectados se realizaron para R 0 igual a 1,5, 2,0, 2,4 y 2,6, valores que fueron reportados por el equipo de respuesta del coViD-19 del Imperial College. Además, otros parámetros reportados en otros estudios como se indica en la Tabla 1.

Tabla 1
Parámetros del modelo SEIR

Las proyecciones de los diferentes escenarios del modelo se compararon con la serie observada de casos confirmados desde el 15 de marzo hasta el 9 de abril. Por otro lado, usando la distribución de casos según severidad, se realizó el cálculo de casos leves, severos y críticos en los puntos más altos por cada escenario 1111. Wu JT, Leung K, Bushman M, Kishore N, Niehus R, de Salazar PM, et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med. 2020 [Cited 2020 Abril 23]:1-5. Available from: Available from: https://go.nature.com/2Wyxf0N . DOI:10.1038/s41591-020-0822-7.
https://go.nature.com/2Wyxf0N...
.

Por último, se realizó la estimación de un modelo exponencial para determinar la tasa de crecimiento de los casos confirmados antes y después de la medida de cuarentena impuesta por el Gobierno nacional, esto con el objetivo de medir el posible efecto de la intervención, además de aportar información complementaria a la proyección de casos reportada por el modelo SEIR.

RESULTADOS

Hasta el 9 de abril, en Cali se habían reportado 243 casos y 5 muertes para una tasa de letalidad de 2,0%. Teniendo en cuenta una población de 2 200 000 de habitantes para Cali, la estimación de prevalencia de infectados bajo el escenario menos optimista (R 0 =2,6) mostró una curva con un punto máximo de 195 666 casos para el primero de junio, mientras que para un número de reproducción igual a 2,4 el pico se presentaría el 10 de junio con 172 991; para un R 0 de 2 el pico sería el 5 de julio con 122 364; y finalmente el escenario más optimista muestra un curva disminuida en su frecuencia de casos, con un punto alto el 22 de septiembre (50 713 casos) (Figura 1). Además, las proyecciones muestran que el porcentaje de contagiados en la ciudad respecto a la población total serían: 59% (R 0 =1,5), 80% (R 0 =2,0), 88% (R 0 =2,4) y 91% (R 0 =2,6).

Figura 1
Proyección de la prevalencia de casos de COVID-19 para diferentes escenarios

Al comparar la serie de casos confirmados con la predicción realizada para los diferentes números de reproducción (R 0 ), se encuentra que la serie observada al inicio presenta una ocurrencia de casos mayor a la proyectada con un número de 2,6; sin embargo, a partir del 26 de marzo, la tendencia cambia y muestra que, posiblemente, si se analizan los datos en semanas posteriores, su comportamiento pueda ser similar al presentado teniendo en cuenta un R0 igual a 2 o menor (Figura 2).

Figura 2
Comparación datos observados con los diferentes escenarios del modelo SEIR

Debido a la necesidad de determinar no sólo el número de personas infectadas en el tiempo, sino además cuántos de estos van a requerir de los servicios de salud, se encontró que el número de casos críticos para un número básico de reproducción de 1,5 en el punto más alto de la epidemia es 2 119, para R 0 =2,0 es de 5 113, con R 0 =2,4 son 7 228 y finalmente para un R0 de 2,6 se esperarían 8 176 casos críticos (Tabla 2).

Tabla 2
Distribución de casos proyectados según severidad en el pico de la predicción

Por otro lado, los resultados del modelo exponencial muestran que la tasa de crecimiento de casos confirmados antes de la medida de cuarentena fue de 1,2 IC95% [1,11,3]. Esto quiere decir que, si -por ejemplo- un día se inicia con un reporte de unos 100 casos, cada día aumentaría en un 21% y al cabo de dos semanas se podrían tener 1 744 casos diarios; y de estos más o menos unos 73 casos necesitarían uci diariamente; sin embargo, la tendencia después de la medida presentó un descenso de 11% en los casos nuevos presentados a diario (Tasa=0,9 IC95%[0,8-0,9]) (Figura 3).

Figura 3
Tendencia de casos confirmados y ajuste del Modelo Exponencial.

A través del modelo SEIR se encontró que, para el número básico de reproducción más alto de 2,6 y utilizando la letalidad calculada para la ciudad de 2%, el número máximo de casos se alcanzaría el primero de junio con 195 666 (prevalencia). Sin embargo, al comparar los casos observados con la proyección se observa que al inicio la ocurrencia estaba por encima de las predicciones pero luego cambia la tendencia disminuyendo el grado de inclinación. Con unas semanas más de información (posteriores al 9 de abril) se podrá determinar si los casos observados siguen el comportamiento de un número básico de reproducción de 2 o 1,5. Por otro lado, a través del modelo exponencial se pudo medir el efecto generado por la cuarentena sobre la ocurrencia de casos confirmados; este hecho evidencia que, antes de la medida, el crecimiento diario de casos era de 21%, mientras que después de la misma se presentó una disminución en el reporte en 11%.

La construcción de este tipo de modelos durante la ocurrencia de una pandemia de esta magnitud se hace necesario, dado que ayuda a los Gobiernos en la planeación y construcción de intervenciones de forma anticipada. Los modelos epidemiológicos SEIR son una opción tradicional y sencilla que a través de un sistema de ecuaciones y la suposición o generación de valores iniciales predice la ocurrencia de casos de una enfermedad infecciosa, proporcionando datos a largo plazo sobre el comportamiento de la prevalencia e incidencia. Permiten, además, considerar la dinámica de la epidemia a través de los diferentes estados en los que se pueden mover los hospederos del virus y valorar los efectos de posibles intervenciones, como las vacunas, si existieran 1212. Peng L., Yang W., Zhang D., Zhuge C. Hong L. Epidemic analysis of COVID-19 in China by dynamical modeling. Nature Medicine. 2020 [Cited 2020 Abril 23]; 26:506-510. Available from: Available from: https://tinyurl.com/ycrarahp .
https://tinyurl.com/ycrarahp...
.

Sin embargo, estos modelos, aunque son muy utilizados, presentan varias limitaciones. Una de estas es la suposición en el comportamiento de parámetros, aunque podría ser una ventaja inicialmente, dado que la ausencia de estos valores permite incluir estimaciones de otros estudios (como sucede en este artículo). También podría resultar en proyecciones imprecisas, debido a que no se está considerando la distribución local de valores como el número básico de reproducción, que puede estar muy influida por dinámicas culturales o sociales del país o de la ciudad, además de cambiar a medida que evoluciona el brote 1313. Flaxman S, Mishra S, Gandy A, Unwin H, Coupland H, Mellan T. et al. Report 13 - Estimating the number of infections and the impact of nonpharmaceutical interventions on COVID-19 in 11 European countries. Imperial College London. 2020 [cited Abril 23 2020]. Available from: Available from: https://tinyurl.com/y8ujbbkt . DOI:10.25561/77731.
https://tinyurl.com/y8ujbbkt...
. Así mismo, no considera factores socioeconómicos como las condiciones de vivienda de la población, lo cual podría ser crucial en la propagación del virus, o las condiciones climáticas que ya se ha demostrado tiene un efecto en la ocurrencia de casos 1414. Ma Y, Zhao Y, Liu J, He X, Wang B, Fu S, et al. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Science of The Total Environment; 2020 [Cited 2020 Abril 23]:138-226. Available from: Available from: https://tinyurl.com/y8gm6e8m . DOI:10.1016/j.scitotenv.2020.138226.
https://tinyurl.com/y8gm6e8m...
.

Aunque este tipo de modelos pueden presentar incertidumbre en sus resultados, se debe mencionar que, en general, los datos epidemiológicos también pueden afectarse por varios inconvenientes, como es el retraso en la entrega de resultados de las pruebas, en la notificación y limitaciones en la cobertura, inconvenientes que generan posibles imprecisiones en la información. Sumado a esto, en ninguna región se conoce con certeza absoluta la cantidad de infectados reales (considerando los posibles asintomáticos), lo que finalmente puede resultar en modelos epidemiológicos con proyecciones imprecisas o con un alto grado de incertidumbre, aun si se ajustan por los factores mencionados anteriormente.

En el futuro inmediato, se deben considerar modelos que incorporen las características dinámicas locales de la transmisibilidad, por ejemplo, estimando el número efectivo de reproducción (R t ), el cual varía en el tiempo y puede emplearse para hacer seguimiento y evaluación de las medidas de contención del brote en tiempo real 1515. Pan A, Liu L, Wang C, Guo H, Hao X, Wang Q, et al. Association of public health interventions with the epidemiology of the COVID-19 out-break in Wuhan, China. Jama. 2020. Available from: https://tinyurl.com/y7vqeupr. DOI:10.1001/jama.2020.6130.
https://tinyurl.com/y7vqeupr...
. Variaciones de estos modelos podrían incorporar la incertidumbre en un marco de modelación bayesiana, así como el concepto de epicentros, que surge de modelar adicionalmente la transmisibilidad en función de la proximidad geográfica de los casos ·

Agradecimientos:

Los autores agradecen a Gisel Guzman, geógrafa de la Universidad del Valle, a la Secretaría de Salud Pública Municipal y a la Alcaldía de Santiago de Cali por facilitar el acceso a la información.

REFERENCIAS

  • 1
    COVID-19 Dashboard by the Center for Systems Science and En-gineering (CSSE) at Johns Hopkins University [Internet]. Baltimore: Johns Hopkins University; 2020 [updated 2020; cited 2020 Abril 14]. Available from: Available from: https://bit.ly/3ceI1Qe
    » https://bit.ly/3ceI1Qe
  • 2
    Módulo de datos COVID-19 en Colombia. Bogotá: Instituto Nacional de Salud; 2020 [updated 2020, cited 2020 Abril 14]. Available from: Available from: https://bit.ly/2YGzu4D
    » https://bit.ly/2YGzu4D
  • 3
    Radulescu A, Cavanagh K. Management strategies in a SEIR model of COVID-19 community spread [preprint]. Physics.soc-ph. Arxiv. 2020 [cited 2020 Abril 14]. Available from: Available from: https://bit.ly/3dujJCd
    » https://bit.ly/3dujJCd
  • 4
    Ferguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Bague-lin M. et al. Impact of non-pharmaceutical interventions (NPIs) to re duce COVID-19 mortality and healthcare demand. Imperial College. 2020 [Cited 2020 Abril 23]. Available from: Available from: https://bit.ly/35GGuA6 DOI:10.25561/77482.
    » https://doi.org/10.25561/77482» https://bit.ly/35GGuA6
  • 5
    Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, Da-vies N, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020 [Cited 2020 Abril 15]. Available from: Available from: https://bit.ly/2WBMpSP DOI:10.1016/S1473-3099(20)30144-4.
    » https://doi.org/10.1016/S1473-3099(20)30144-4» https://bit.ly/2WBMpSP
  • 6
    Crokidakis N. Data analysis and modeling of the evolution of COVID-19 in Brazil [Preprint]. Physics.soc-ph. arXiv. 2020 [Cited 2020 Abril 23]. Available from: Available from: https://bit.ly/2A9xuI7
    » https://bit.ly/2A9xuI7
  • 7
    Manrique FG, Agudelo CA, González VM, Gutiérrez O, Téllez CF, He rrera G. Modelo SIR de la pandemia de Covid-19 en Colombia. Rev. Salud Pública. 2020 Feb [Cited 2020 Abril 15]; 2(1):1-9. Available from: Available from: https://bit.ly/2WzJjin DOI:10.15446/rsap.v22.85977.
    » https://doi.org/10.15446/rsap.v22.85977» https://bit.ly/2WzJjin
  • 8
    Create a new ggplot. Tdyverse [Internet]. USA: RStudio; 2020 [Cited 2020 Abril 15]. Available from: Available from: https://bit.ly/2WAJutF
    » https://bit.ly/2WAJutF
  • 9
    Mandal S, Ram Rup S, Somdatta S. Mathematical models of malaria-a review. Malar J. July 2020 [Cited 2020 Abril 15]; 10(202): 1-19. Availa ble from: Availa ble from: https://bit.ly/2LcF9r6 DOI:10.1186/1475-2875-10-202.
    » https://doi.org/10.1186/1475-2875-10-202» https://bit.ly/2LcF9r6
  • 10
    Kermack WO, McKendrick AG. Contribution to the mathematical theory to epidemics-I. Proc R Soc Lond. 1991 [Cited 2020 Abril 15]; 115:100 -121. Available from: Available from: https://bit.ly/2WtZ4ag DOI:10.1007/BF02464423.
    » https://doi.org/10.1007/BF02464423» https://bit.ly/2WtZ4ag
  • 11
    Wu JT, Leung K, Bushman M, Kishore N, Niehus R, de Salazar PM, et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med. 2020 [Cited 2020 Abril 23]:1-5. Available from: Available from: https://go.nature.com/2Wyxf0N DOI:10.1038/s41591-020-0822-7.
    » https://doi.org/10.1038/s41591-020-0822-7» https://go.nature.com/2Wyxf0N
  • 12
    Peng L., Yang W., Zhang D., Zhuge C. Hong L. Epidemic analysis of COVID-19 in China by dynamical modeling. Nature Medicine. 2020 [Cited 2020 Abril 23]; 26:506-510. Available from: Available from: https://tinyurl.com/ycrarahp
    » https://tinyurl.com/ycrarahp
  • 13
    Flaxman S, Mishra S, Gandy A, Unwin H, Coupland H, Mellan T. et al. Report 13 - Estimating the number of infections and the impact of nonpharmaceutical interventions on COVID-19 in 11 European countries. Imperial College London. 2020 [cited Abril 23 2020]. Available from: Available from: https://tinyurl.com/y8ujbbkt DOI:10.25561/77731.
    » https://doi.org/10.25561/77731» https://tinyurl.com/y8ujbbkt
  • 14
    Ma Y, Zhao Y, Liu J, He X, Wang B, Fu S, et al. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Science of The Total Environment; 2020 [Cited 2020 Abril 23]:138-226. Available from: Available from: https://tinyurl.com/y8gm6e8m DOI:10.1016/j.scitotenv.2020.138226.
    » https://doi.org/10.1016/j.scitotenv.2020.138226» https://tinyurl.com/y8gm6e8m
  • 15
    Pan A, Liu L, Wang C, Guo H, Hao X, Wang Q, et al. Association of public health interventions with the epidemiology of the COVID-19 out-break in Wuhan, China. Jama. 2020. Available from: https://tinyurl.com/y7vqeupr DOI:10.1001/jama.2020.6130.
    » https://doi.org/10.1001/jama.2020.6130» https://tinyurl.com/y7vqeupr

  • Conflicto de intereses:
    Ninguno.

Fechas de Publicación

  • Publicación en esta colección
    06 Feb 2023
  • Fecha del número
    Mar-Apr 2020

Histórico

  • Recibido
    15 Abr 2020
  • Revisado
    18 Abr 2020
  • Acepto
    28 Abr 2020
Instituto de Salud Publica, Facultad de Medicina - Universidad Nacional de Colombia Bogotá - DF - Colombia
E-mail: revistasp_fmbog@unal.edu.co